
1 Vector Spaces

Since Linear Algebra is the study of linear transformations on vector spaces,
the topic of vector spaces is certainly a reasonable place to start. One could
easily argue that it’s actually the only reasonable place to start.1 As we saw in 1:
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Wha? Oh, yes. That is my
gauntlet on the ground!the previous chapter, you cannot construct a function without clearly defining

its domain. Linear transformations are functions, and we’ll eventually see that
vector spaces are used as their domains. Thus, we should begin here with one
of the two main characters of this story, vector spaces.

1.1 Vector Spaces

R? Yep, R. It turns out the set of real numbers, R, is a vector space. This
seems to be an excellent place to start our discussion.

There are many ways to construct the real numbers.2 That said, we’re not 2:
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They are all super interesting,
very cool, and usually discussed in a
Real Analysis course.

going to spend any time constructing the real numbers, R, any more than you
would in a typical calculus course. We’re going to step over this particular
mathematical duck by simply saying the following dissatisfying thing:

(1.1) R = (−∞,∞).

Note that the authors have chosen to number this equation. This is so that if
future equations seem mystifying, you, the reader, can be referred back to this
thing for some perspective.

The goal of this section is not to define R but to understand the properties of
R with typical operations (adding and multiplying) that we really like. Hey,
speaking of operations, let’s recall some in case any of you skipped over Chap-
ter 0.

Definition 1.1.1 Addition is the function (+): R × R → R defined by
relating two real numbers to their sum. Multiplication is the function
(·) : R× R→ R defined by relating two real numbers to their product.

14



1.1. VECTOR SPACES 15

You should be very familiar with both of these operations and all of the prop-
erties they enjoy; you probably know them all by name. Nevertheless, here’s
a nice comprehensive list:

Theorem 1.1.1 (Field Axioms for Real Numbers) Let + and · be used for
the usual operations of addition and multiplication, respectively. There are
elements 0, 1 ∈ R such that for any a, b, c ∈ R and any nonzero d ∈ R,

Commutativity of Addition a+ b = b+ a,
Associativity of Addition (a+ b) + c = a+ (b+ c),

Additive Identity a+ 0 = 0 + a = a,
Additive Inverses there is an element −a ∈ R such

that a+ (−a) = (−a) + a = 0,

Commutativity of Multiplication a · b = b · a,
Associativity of Multiplication (a · b) · c = a · (b · c),

Multiplicative Identity a · 1 = 1 · a = a,
Multiplicative Inverses there is an element d−1 ∈ R such

that d · d−1 = d−1 · d = 1, and

Distributive Property a · (b+ c) = a · b+ a · c.

The real numbers are pretty great, though. We built a whole sequence of cal-
culus courses using them! Asking that any old set do all nine of these things
is a bit much. Let’s see what happens when we change it up a bit.

Example 1.1.1 Let’s first consider the set Z. Which of these properties
hold and which fail for Z? First of all, since we’re using a different set (Z
instead of R), we need to be sure that Z is closed under the operations of
addition and multiplication as well; indeed, Z is closed under addition and
multiplication. Moreover, since these are actually the same operations as
the ones in R, the following properties hold in Z because they hold in R:

▶ Commutativity of Addition: a+ b = b+ a for a, b ∈ Z
▶ Associativity of Addition: (a+ b)+ c = a+(b+ c) for a, b, c ∈ Z
▶ Commutativity of Multiplication: a · b = b · a for a, b ∈ Z
▶ Associativity of Multiplication: (a ·b) ·c = a · (b ·c) for a, b, c ∈ Z
▶ Distributive Property: a · (b+ c) = a · b+ a · c for a, b, c ∈ Z

These were all properties of the operations + and · instead of properties of
the set. The properties of the set will require a bit more thought from us.

▶ Additive Identity: Since this is the same addition as for R, our
element 0 is still the additive identity. The condition we are now
checking is whether this element is in Z, which it is! Thus, this
one also holds for Z.

▶ Additive Inverses: Again, since any a ∈ Z is also in R, the additive
inverse of a is still the same as in R, so for any a ∈ Z, we need to
see that −a ∈ Z, which it is! Thus, this one also holds for Z.

▶ Multiplicative Identity: Same as these others, we need only note
that 1 ∈ Z to see this one holds as well.
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▶ Multiplicative Inverses: Again, the multiplicative inverses are the
same as the ones in R, so we need only check that if a ∈ Z, then
1

a
∈ Z. But this one fails! In particular, 2 ∈ Z but

1

2
/∈ Z.

Exploration 10 Can you name another set with the operations of addition and
multiplication where all these properties hold? (Hint: Many answers do exist.)

Exploration 11 Find a property that fails for R if we replace + with −.

The real numbers work super well. Having two operations is pretty great.
We get all those extra rules to make sure they both work correctly and play
nice together. We get to put them in a list and memorize them. It’s all very
satisfying.

Let’s scrap it all and start over. Don’t memorize anything yet. Well, maybe
we’ll keep that addition bit. Most people rather like that one. But multiplica-
tion? Be honest. Hasn’t “repeated addition” always felt a little scammy to you
as an operation?3 3:
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Total pyramid scheme!

Vector Spaces, by Definition

In all seriousness, though, what was just described is roughly what’s about to
happen. The set of real numbers is a very complicated set. You do get a lot of
very nice properties with addition and multiplication on R, but the properties
themselves, when taken all together, can be restrictive in some ways. The idea
is to give up some of the properties we enjoyed from Theorem 1.1.1 so that we
can enjoy that smaller collection of properties on a wider variety of sets.

It’s not as bad as it sounds. In fact, we’ll still have two operations!

Definition 1.1.2 A vector space over R is a set V (whose elements we call
vectors) together with two operations that satisfies all the properties listed
below.

▶ The first operation, called vector addition (+): V × V → V ,
relates two vectors v⃗ and w⃗ to a third vector, commonly written as
v⃗ + w⃗, and called the sum of these two vectors.

▶ The second operation, called scalar multiplication (·) : R× V →
V relates any scalar a ∈ R and any vector v⃗ ∈ V to another
vector av⃗.

There are elements 0⃗ ∈ V and 1 ∈ R such that for all u⃗, v⃗, w⃗ ∈ V and all
a, b ∈ R,
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Closure under Addition u⃗+ v⃗ ∈ V ,
Associativity of Addition u⃗+ (v⃗ + w⃗) = (u⃗+ v⃗) + w⃗,

Commutativity of Addition u⃗+ v⃗ = v⃗ + u⃗,
Additive Identity v⃗ + 0⃗ = 0⃗ + v⃗ = v⃗,
Additive Inverses there exists an element −v⃗ ∈ V

such that
v⃗ + (−v⃗) = (−v⃗) + v⃗ = 0⃗,

Closure under Scalar Multiplication av⃗ ∈ V ,
Scalar and Real Multiplication a(bv⃗) = (ab)v⃗,

Multiplicative Identity 1v⃗ = v⃗,

Distributivity Over Vector Addition a(u⃗+ v⃗) = au⃗+ av⃗, and
Distributivity Over Real Addition (a+ b)v⃗ = av⃗ + bv⃗.
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Fun fact: If there’s some other field
you prefer, you can use that one instead
of R here, and define vector spaces over
that field instead. Wild, right? Anywho,
we’re gonna stick with vector spaces
over R in this text.
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Vector spaces over other fields are
often used in physics and computer sci-
ence and are a topic in abstract algebra
courses-
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-ahem! We’re gonna stick with
vector spaces over R in this text.

Note that before you can even call something a vector space and start talking
about all the cool stuff it can or can’t do, you need a set and two operations.
Therefore, if someone says to you, “Hey! Check out this cool set! I think
it’s a vector space.” Your immediate reaction should be roughly, “Oh yeah?
With what operations?” If the other person runs away, they were probably
wrong about their set. If they produce two reasonable operations that could be
called vector addition and scalar multiplication, then you’ve found a worthy
companion to assist in verifying every single one of the axioms neatly listed
in Definition 1.1.2. Then, and only then, should you dare declare your set a
vector space.

Fun fact: R is a vector space.4 This is not surprising at all; it was, after all,

4:
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Oh yeah? With what opera-
tions?
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Addition and multiplication. You
know, the regular ones.

the muse which begat this fun new definition.5 Now, let’s take a bunch of

5:
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Yes,“begat.” It’s a perfectly
good word. Challenge: Find a way to
use this word in a sentence of your own
today.

Cartesian products!

Rn = R× · · · × R = {(x1, . . . , xn) : xi ∈ R for i = 1, . . . , n}

People use all sorts of goofy notaton for Rn. The preceding one is respectable
enough. Your calculus book might use something like

Rn = {⟨x1, . . . , xn⟩ : xi ∈ R for i = 1, . . . , n} .

We assume the common use of this notation is due to its pointy-ness and gen-
eral sinister appearance. We’ll more often use the seemingly obnoxious nota-
tion

(1.2) Rn =


 x1

...
xn

 : xi ∈ R for 1 ≤ i ≤ n

 .

What a neat set! Did you know that Rn is a vector space?

Ahem.

We’re waiting. . .
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Oh? Operations? Yes, of course. Vector addition is done componentwise. For
any x⃗, y⃗ ∈ Rn, where

(1.3) x⃗ =

 x1

...
xn

 and y⃗ =

 y1
...
yn

 , we define x⃗+ y⃗ =

 x1 + y1
...

xn + yn

 .

For scalar multiplication, just multiply the scalar to each component of the
given vector. That is, for any x⃗ ∈ Rn and any a ∈ R, we define

(1.4) ax⃗ = a

 x1

...
xn

 =

 ax1

...
axn

 .

Very nice, eh? Perfectly good vector addition and scalar multiplication. We
defined these using what’s called a general element of Rn. We should talk
more about this.

Many people find the most difficult part in verifying the axioms of a vector
space (besides the tedium) to be showing each axiom works for all potential
vectors in the given potential vector space. Almost all the real vector spaces
we will see end up having an infinite number of vectors, so verifying each
property for literally all vectors is not feasible. What one needs is a general
vector that could represent any vector in the set. Nothing too specific, this
vector needs to be generic enough that it satisfies all the properties required to
be in the set and nothing else. Let’s look at R3.

(1.5) R3 =


 x1

x2

x3

 : xi ∈ R for i = 1, . . . , 3


Now what does it mean exactly to be “in R3?” While we’ve settled on the
notation above, we also saw two others. Specifically,

R3 = {(x1, x2, x3) : x1, x2, x3 ∈ R} or R3 = {⟨x1, x2, x3⟩ : x1, x2, x3 ∈ R} .

It’s instructive now to consider what they all have in common. In each nota-
tion, we would use three real numbers; each could be any real number, so we
used a variable xi (where 1 ≤ i ≤ 3) for each. These sequential subscripts
also suggest these entries are ordered. That’s a lot of information that’s easy
to look past! Evidently, whether we write them vertically or horizontally does
not matter; we choose the former for reasons that will be clear later.

To make a general vector in R3, we need three real variables in order. Thus, x1

x2

x3

 is a general vector in R3;

 8

−1.3
1/2

 is not. It is a specific vector in R3.

Most of the axioms in Definition 1.1.2 involve more than one vector, so we’d
actually need two general vectors. It’s standard to just use a different letter for
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the variable, so for x⃗, y⃗ ∈ R3, we would write

x⃗ =

 x1

x2

x3

 and y⃗ =

 y1
y2
y3

 .

These are both general vectors in R3. If we can show something is true with
these, then it can be assumed to be true for any vector in R3. It’s sometimes
not hard at all to find a general vector for a vector space; they are often given
in the definition of the set, as in Equation 1.5.

Let’s show that R2 satisfies all the requirements to be a vector space given in
Definition 1.1.2.6 We’ll make careful use of general vectors to do so. 6:
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We could just as easily show R3

or R100, but it’ll take up less space if we
do R2.Example 1.1.2 Let x⃗, y⃗, z⃗ ∈ R2 and a, b ∈ R. Then,

x⃗ =

[
x1

x2

]
, y⃗ =

[
y1
y2

]
, and z⃗ =

[
z1
z2

]
for some x1, x2, y1, y2, z1, z2 ∈ R.

▶ Closure under Addition: Note that

x⃗+ y⃗ =

[
x1 + y1
x2 + y2

]
.

Since xi, yi ∈ R for each i = 1, 2 and we know R is closed under
addition, each xi + yi ∈ R. Thus, x⃗ + y⃗ ∈ R2 and R2 is closed
under this vector addition.

▶ Associativity of Addition:

x⃗+ (y⃗ + z⃗) =

[
x1

x2

]
+

[
y1 + z1
y2 + z2

]
=

[
x1 + (y1 + z1)

x2 + (y2 + z2)

]
=

[
(x1 + y1) + z1
(x2 + y2) + z2

]
=

[
x1 + y1
x2 + y2

]
+

[
z1
z2

]
= (x⃗+ y⃗) + z⃗.

Here we used the associative property for R in each component.
▶ Commutativity of Addition:

x⃗+ y⃗ =

[
x1

x2

]
+

[
y1
y2

]
=

[
x1 + y1
x2 + y2

]
=

[
y1 + x1

y2 + x2

]
=

[
y1
y2

]
+

[
x1

x2

]
= y⃗ + x⃗

Here, we used the commutative property of real numbers to see
that x1 + y1 = y1 + x1 and x2 + y2 = y2 + x2.

▶ Additive Identity: For this, we need to identify the additive iden-
tity 0⃗, the special vector in R2 such that x⃗+0⃗ = x⃗ for any x⃗ ∈ R2.
There’s something pretty obvious to guess, but that won’t always
be the case. We’ll do this one the “long way.” Suppose our identity

is the vector v⃗ =

[
v1
v2

]
. Then we know x⃗+ v⃗ = x⃗, which means[

x1

x2

]
+

[
v1
v2

]
=

[
x1

x2

]
.
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We can use the definition of our vector addition then to get[
x1 + v1
x2 + v2

]
=

[
x1

x2

]
,

so x1 + v1 = x1, which says v1 = 0. Similarly, x2 + v2 = x2,

so v2 = 0 as well. This says our v⃗ = 0⃗ =

[
0

0

]
. Fortunately,

0⃗ ∈ R2 and this calculation works for any vector x⃗, so our set
contains an additive identity!

▶ Additive Inverses: Now that we know what the additive identity
is, we can find the additive inverse of a vector x⃗ ∈ R2. This is the

special vector v⃗ such that x⃗+ v⃗ = 0⃗, so if v⃗ =

[
v1
v2

]
, we have[

x1

x2

]
+

[
v1
v2

]
=

[
0

0

]
Then we see that[

x1 + v1
x2 + v2

]
=

[
0

0

]
.

Thus, x1 + v1 = 0 and v1 = −x1. We also see v2 = −x2, so the

additive inverse of
[

x1

x2

]
is
[
−x1

−x2

]
, which is also in R2. Thus,

every element in R2 has an additive inverse in R2.
▶ Closure under Scalar Multiplication: We need to argue why

ax⃗ ∈ R2 for any real number a and any vector x⃗ ∈ R2. Note
that

ax⃗ = a

[
x1

x2

]
=

[
ax1

ax2

]
.

Then since a, x1, x2 ∈ R and R is closed under multiplication, we
know ax1, ax2 ∈ R. This means ax⃗ ∈ R2.

▶ Scalar and Real Multiplication: This property is essentially
guaranteeing our definition of scalar multiplication works well
with the usual idea of multiplication in R. Formally, we need to
show (ab)x⃗ = a(bx⃗). Using the definition of scalar multiplication
and the associative property for multiplication of real numbers, we
have

(ab)x⃗ = (ab)

[
x1

x2

]
=

[
(ab)x1

(ab)x2

]
=

[
a(bx1)

a(bx2)

]
= a

[
bx1

bx2

]
= a

(
b

[
x1

x2

])
= a(bx⃗).

▶ Multiplicative Identity: In the case of the additive identity, we
had to find it and be sure it was in the set. Here, we know the
multiplicative identity has to be 1, but we just need to check that it
does what it should with this scalar multiplication definition. Let’s
see what 1x⃗ is then.

1x⃗ = 1

[
x1

x2

]
=

[
1x1

1x2

]
=

[
x1

x2

]
= x⃗.

Yay! It works!
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▶ Distributivity Over Vector Addition: For this, we are checking
that scalar multiplication distributes across vector addition, so we
need to see a(x⃗+ y⃗) = ax⃗+ay⃗ for any real number a and any vec-
tors x⃗, y⃗ ∈ R2. Using the distributive property for real numbers,
we get

a(x⃗+ y⃗) = a

([
x1

x2

]
+

[
y1
y2

])
= a

[
x1 + y1
x2 + y2

]
=

[
a(x1 + y1)

a(x2 + y2)

]
=

[
ax1 + ay1
ax2 + ay2

]
=

[
ax1

ax2

]
+

[
ay1
ay2

]
= a

[
x1

x2

]
+ a

[
y1
y2

]
= ax⃗+ ay⃗.

▶ Distributivity Over Real Addition: This last axiom is checking
that our new operations work well with our classic addition in R.
That is, we need to verify that (a+b)x⃗ = ax⃗+bx⃗ for any real num-
bers a and b and any vector x⃗ ∈ R2. Again using the distributive
property for real numbers, we get

(a+ b)x⃗ = (a+ b)

[
x1

x2

]
=

[
(a+ b)x1

(a+ b)x2

]
=

[
ax1 + bx1

ax2 + bx2

]
=

[
ax1

ax2

]
+

[
bx1

bx2

]
= a

[
x1

x2

]
+ b

[
x1

x2

]
= ax⃗+ bx⃗.

Great! Now, you’ve seen how a set with operations of vector addition and
scalar multiplication can be shown to be a vector space! Note that for each
of the axioms, we relied upon established knowledge about R, the set of real
numbers.7 However, we only showed R2 is a vector space. We claimed that 7:
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This is what we do in mathe-
matics! We build logically upon what is
already known.

Rn is a vector space for any positive integer n. Well, that proof is very similar.
Let’s see how by focusing on closure of addition for Rn. That is, given any
x⃗, y⃗ ∈ Rn, we want to show x⃗+ y⃗ ∈ Rn. Note that

x⃗ =

 x1

...
xn

 and y⃗ =

 y1
...
yn


are general vectors in Rn. Then by definition of vector addition in Rn (Equa-
tion 1.3), we have

(1.6) x⃗+ y⃗ =

 x1

...
xn

+

 y1
...
yn

 =

 x1 + y1
...

xn + yn

 .

It remains to show that the vector at the end of Equation 1.6 is a vector in Rn.
Since R is closed under addition, we know that xi + yi ∈ R for i = 1, . . . , n.
Thus,  x1 + y1

...
xn + yn

 ∈ Rn.

It follows that x⃗+ y⃗ ∈ Rn, so Rn is closed under vector addition.
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Exploration 12 Following arguments similar to Example 1.1.2 and the one
above, show that Rn is a vector space when n is any positive integer. Well,
that might take a while. At least show two of the axioms hold, so you get a
feel for how this goes.

Remark: There is a small hiccup with your favorite8 vector space, R. Since 8:
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My favorite is actually R2.
we’re usually dealing with vector spaces over R, when we talk about the vector
space R, it can be unclear whether a real number is a vector or a scalar. We
resolve this ambiguity by using bold font for vectors, so if you see 5⃗ ∈ R, you
should interpret this as a vector in the vector space R. If you see 5 ∈ R, you
should interpret this as the scalar 5. Thus, if you want to rescale the vector
5⃗ ∈ R by the scalar 5, you would have

5⃗5 = 2⃗5 ∈ R.

Exactly what just happened there? Well, the vector 5⃗ rescaled by the scalar 5
gives us the vector 2⃗5. It’s potentially confusing because the real number 25 is
being interpreted as a vector. We concede this is both weird and annoying, but
it cannot be avoided. Again, we use bold font to indicate when mathematical
objects are vectors; this will always serve to answer whether or not something
is a vector.9 9:
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Unless there is a typo. No guar-
antees.

Other Vector Spaces

One of the most powerful aspects of vector spaces is the wide variety of sets
that can be made into vector spaces by providing appropriate operations. We’ll
now discuss an example of a standard vector space that is not Rn, and you’ll
see other examples in the exercises.

The set of polynomials of degree n or less is also a very nice set we can make
into a vector space:

(1.7) Pn = {a0 + a1x+ a2x
2 + · · · anxn : ai ∈ R for i = 1, . . . , n}.

The “vectors” in this set are polynomials, so we often write strange-looking
things like

p⃗ = 27− 2x+ xn.

Here we’re saying that p⃗ is the polynomial in the set {a0 + a1x + a2x
2 +

· · · anxn : ai ∈ R for i = 1, . . . , n}, where a0 = 27, a1 = −2, a3 = · · · =
an−1 = 0, and an = 1.
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Given general p⃗, q⃗ ∈ Pn, which we may write as

p⃗ = a0 + a1x+ · · · anxn and

q⃗ = b0 + b1x+ · · · bnxn,

where ai, bi ∈ R, and a scalar c ∈ R, we define vector addition as the usual
polynomial addition

p⃗+ q⃗ = (a0 + a1x+ · · · anxn) + (b0 + b1x+ · · · bnxn)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n,

and we define scalar multiplication as

cp⃗ = c(a0 + a1x+ · · · anxn) = ca0 + ca1x+ · · ·+ canx
n.

Example 1.1.3 We won’t spoil all the fun, but let’s show Pn satisfies at least
one of the axioms to be a vector space with these operations.

▶ Commutativity of Vector Addition: Let p⃗, q⃗ ∈ Pn for some pos-
itive integer n. Then

p⃗ = a0 + a1x+ · · · anxn and q⃗ = b0 + b1x+ · · · bnxn

for some real numbers a0, . . . , an and b0, . . . , bn. Using the def-
initions above and the property of commutativity for addition of
real numbers, we have

p⃗+ q⃗ = [a0 + a1x+ · · · anxn] + [b0 + b1x+ · · · bnxn]

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n

= (b0 + a0) + (b1 + a1)x+ · · ·+ (bn + an)x
n

= [b0 + b1x+ · · · bnxn] + [a0 + a1x+ · · · anxn] = q⃗ + p⃗.

Yay! Vector addition commutes!

Exploration 13 We should really verify all the axioms in Definition 1.1.2 for
Pn. We’ve done one together, so that leaves nine more! For the sake of brevity,
though, let’s walk through a modified version of this exercise.

▶ What is the additive identity in Pn?

▶ What is the additive inverse of the polynomial 5x−3x3+4x7 in P8?

▶ What is the additive inverse of p⃗ = a0 + a1x+ · · · anxn in Pn?

▶ Show that 12(5x−3x3+4x7) = 2(6(5x−3x3+4x7)) by simplifying
both sides separately.
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▶ Following the specific example above, show that abp⃗ = a(bp⃗) for
any p⃗ ∈ Pn and any a, b ∈ R.

Great! That’s a total of four of the axioms down. Just six more to go!

Note that in the exploration above, we sometimes asked that you work a spe-
cific example before taking on the task of verifying the more general state-
ment. This is a worthwhile problem-solving strategy, and you may find it a
useful starting place whenever you are tasked thusly. Just be sure that you do
not confuse it with showing the general statement. An affirmative example will
not let you conclude the statement holds in general. And yet, what about when
the statement does not hold?

Example 1.1.4 We have now seen some examples of sets with operations
of vector addition and scalar multiplication that we’ve at least claimed are
vector spaces. What does it look like when the set is not a vector space?
Consider again the set Z of integers. We can use the regular addition of
integers for our vector addition and use multiplication of real numbers for
our scalar multiplication. This is not a vector space. Let’s see a property
that fails:

▶ Closure under Scalar Multiplication: When we multiply an in-
teger by a real number, we have no reason to expect the outcome
need be an integer. While this statement is true, a much stronger
statement would involve an actual example where this property
fails. Consider 2 ∈ Z and 1/3 ∈ R. Note that (1/3)2 /∈ Z, so Z is
not closed under this scalar multiplication.

The example of failure used above is a technique called “providing a coun-
terexample,” and it is a very useful way to show one of our properties of a
vector space fails.

Section Highlights

This section is where we encounter one of the two main topics of this text for
the first time, a vector space.

▶ A vector space is a set with elements we call vectors together with
the operations of vector addition and scalar multiplication.

▶ There are 10 properties that a set and operations must satisfy in order
for it to be a vector space. See Definition 1.1.2.

▶ To show one of these properties holds, one must use a general ele-
ments from the set. See Example 1.1.2.

▶ To show one of these properties fails, a specific example of it failing
using elements from the set is sufficient. See Example 1.1.4.
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▶ A few important examples of real vector spaces:
R, Rn, and Pn for any positive integer, n.
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Exercises for Section 1.1

1.1.1.For each of the 10 vector space properties, define an operation of vector addition and/or scalar multiplication
on R for which the property fails. Give an explicit example to show the failure.

1.1.2.Give the complete argument that Pn is a vector space.

1.1.3.The complex numbers C are {a+ bi : a, b ∈ R} where i =
√
−1. Verify all the vector space axioms to show

that C is a vector space over the field R.

1.1.4.Below are several operations on R. To keep from confusing them with the standard operations, we’ll use
the symbol ⊞ to denote them. Determine whether these operations obey the commutative and associative
properties.

(a) a⊞ b = a+ 2b for any a, b ∈ R

(b) a⊞ b = ab for any a, b ∈ R

(c) a⊞ b = a+ b+ ab for any a, b ∈ R

(d) a⊞ b = a+ b− 3 for any a, b ∈ R

(e) a⊞ b = a+ b− ab for any a, b ∈ R

1.1.5.Below are several operations on the given set V . To keep from confusing them with the standard operations,
we’ll use the symbol ⊞ to denote them. For each of these operations, determine whether there is an additive
identity (a.k.a zero vector) z⃗ such that x⃗⊞ z⃗ = z⃗ ⊞ x⃗ = x⃗ for any x⃗ ∈ V . If it does exist, what is it?

(a) Let V = R. Define a⃗⊞ b⃗ = a+ 2b for any a⃗, b⃗ ∈ R.

(b) Let V = R. Define a⃗⊞ b⃗ = ab for any a⃗, b⃗ ∈ R.

(c) Let V = R. Define a⃗⊞ b⃗ = a+ b+ ab for any a⃗, b⃗ ∈ R.

(d) Let V = R. Define a⃗⊞ b⃗ = a+ b− 3 for any a⃗, b⃗ ∈ R.

(e) Let V = R2. Define [
a

b

]
⊞

[
c

d

]
=

[
a+ d

b+ c

]
for any a, b, c, d ∈ R.

(f) Let V = R2. Define [
a

b

]
⊞

[
c

d

]
=

[
a+ c− 3

b+ d+ 4

]
for any a, b, c, d ∈ R.



EXERCISES FOR SECTION 1.1 27

(g) Let V = R2. Define [
a

b

]
⊞

[
c

d

]
=

[
ac

b+ d

]
for any a, b, c, d ∈ R.

1.1.6.Note that the additive inverse of x⃗ ∈ V with the operation ⊞ is the unique element i⃗ such that x⃗ ⊞ i⃗ =

i⃗ ⊞ x⃗ = z⃗ where z⃗ is the additive identity. Thus, in order for an element to have an additive inverse, the
set must first have an additive identity. Use your work from the previous exercise to determine whether the
additive identity for the given vectors exists.

(a) Let V = R. Define a⃗⊞ b⃗ = ab for any a⃗, b⃗ ∈ R. If possible, find the additive inverse for 5⃗ and 0⃗.

(b) Let V = R. Define a⃗⊞ b⃗ = a+ b+ ab for any a⃗, b⃗ ∈ R. If possible, find the additive inverse for 5⃗
and −⃗1.

(c) Let V = R. Define a⃗ ⊞ b⃗ = a + b − 3 for any a⃗, b⃗ ∈ R. If possible, find the additive inverse for 5⃗
and 0⃗.

1.1.7.Define a⃗⊞ b⃗ = a+ b− 3 for any a⃗, b⃗ ∈ R. In each of the parts below, we also define a new operation ⊙ for
our scalar multiplication. With this notation, the two distributive properties become:

Distributivity Across Vector Addition k ⊙ (x⃗⊞ y⃗) = (k ⊙ x⃗)⊞ (k ⊙ y⃗)

Distributivity Across Scalar Addition (j + k)⊙ x⃗ = (j ⊙ x⃗)⊞ (k ⊙ x⃗).

Verify whether these properties hold for this vector addition ⊞ and the given ⊙.

(a) Define k ⊙ a⃗ = ka, for any k ∈ R, a⃗ ∈ R.

(b) Define k ⊙ a⃗ = ka− 3, for any k ∈ R, a⃗ ∈ R.

(c) Define k ⊙ a⃗ = ka− 3k + 3, for any k ∈ R, a⃗ ∈ R.

1.1.8.Let’s consider R, with a new operation. Let’s replace the usual vector addition with the operation “⊞” de-
fined by a⊞ b = a+ b+ ab for any a, b ∈ R. Determine whether R is still a vector space with the operation
⊞ for vector addition and the usual scalar multiplication. If it is not, which properties fail?

1.1.9.Let’s consider R, with two new operations. Let’s replace the usual vector addition with the operation “⊞”
defined by a⊞ b = a+ b− 3 for any a, b ∈ R and scalar multiplication defined by k ⊙ a = ka− 3k + 3 for
any k ∈ R and a ∈ R. Determine whether R is still a vector space with the operation ⊞ for vector addition
and the operation ⊙ for scalar multiplication. If it is not, which properties fail?

1.1.10.Let’s consider R2 with a new operation as well. Let’s vector addition with “⊞” defined by[
a

b

]
⊞

[
c

d

]
=

[
a+ d

b+ c

]
for any a, b, c, d ∈ R. Determine whether R2 is still a vector space with the operation ⊞ and the usual scalar
multiplication. If it is not, which properties fail?

1.1.11.Let’s consider P2 with a new operation. Replace vector addition with “⊞” defined by

(a+ bx+ cx2)⊞ (d+ ex+ fx2) = (b+ 2cx) + (e+ 2fx) = (b+ e) + 2(c+ f)x.
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Determine whether P2 is still a vector space with the operation ⊞ and the usual scalar multiplication. If it is
not, which properties fail?

1.1.12.Let V = {a : a ∈ R, a > 0} = (0,∞). Verify V is a vector space over R with vector addition given by
a⃗ ⊞ b⃗ = a⃗b (vector addition is defined as real multiplication as positive numbers) and scalar multiplication
given by ka⃗ = ak (scalar multiplication is defined as real exponentiation) for any k ∈ R, a⃗, b⃗ ∈ V .

1.1.13.Let V = {a : a ∈ R, a > 0} = (0,∞). As in the previous exercise, let vector addition be given by
a⃗ ⊞ b⃗ = a⃗b, but now, let scalar multiplication be given by ka⃗ = ka for any k ∈ R, a⃗, b⃗ ∈ V . Determine
whether this is a vector space.

1.1.14.Let V be the interval (0, 1) on the real numbers. Define vector addition as a⃗⊞ b⃗ = a⃗b for a⃗, b⃗ ∈ V and scalar
multiplication as ka⃗ = ak for any k ∈ R and a⃗ ∈ V . This is not a vector space over R. List each of the
properties of a vector space that fail.

1.1.15.Let X = R ∪ ,, where , is a new number referred to as “unity face.” For all x ∈ X , define x + , =

, + x = , and x(,) = ,(x) = ,. With the usual addition and multiplication operations, is X a vector
space?
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1.2 Arrow Vectors and Rn for Small n

Many of you have seen vectors before, whether in physics, calculus, or perhaps
your favorite animated movie. However, the definition you saw was perhaps
a bit different. You likely learned that a vector is some quantity with both
magnitude and direction, such as velocity. Well, does this match up with what
we’ve said here about vector spaces? Indeed, it would be very embarrassing if
it did not.
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Hey! What are all these
pictures doing in our margin?
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v⃗

y⃗

x⃗
w⃗

u⃗

Figure 1.1: Here v⃗ and u⃗ are arrow vectors.
However, w⃗, x⃗, and y⃗ are not.

If we let a vector be a quantity with magnitude and direction, it is natural to
represent this with an arrow. The arrow points in the direction desired, and it
has a length that can be used to represent its magnitude. For now, let’s call this
an arrow vector. See Figure 1.1 to the side.

v⃗

u⃗

v⃗ + u⃗

Figure 1.2: Here v⃗ and u⃗ are added to form
the new arrow vector v⃗ + u⃗, identified with
the dashed arrow line.

Thus, we would like to establish that an arrow vector is actually an element
in some vector space over R, as we defined in the previous section. For these
arrow vectors to form a vector space over R so that the set, V , we are dealing
with is the set of all arrow vectors, we need to have a way to add them, and we
need to have a concept of scalar multiplication with scalars from R.

u⃗

v⃗

u⃗

v⃗

(v⃗ + u⃗) + w⃗

v⃗ + (u⃗+ w⃗)

w⃗

w⃗

u⃗+ w⃗

v⃗ + u⃗

Figure 1.3: Here v⃗, u⃗, and w⃗ are added to
form the new arrow vector v⃗+ u⃗+ w⃗, ideni-
fied with the dashed arrow line, two ways to
show this vector addition is associative.

First of all, since all these arrows are doing is recording magnitude and direc-
tion, their placement on this page does not matter. Thus, an arrow vector can
be moved to a new location without changing the arrow vector itself. Thus, a
natural addition of the vectors v⃗ and u⃗ is to first follow along v⃗ and then from
there, follow along u⃗. As seen in Figure 1.2, the sum is then the arrow vector
drawn from where you started to where you ended.

Now, does this addition satisfy our axioms for addition in a vector space?
We see quickly that it is closed since the result is a new arrow vector. It is
also associative and commutative from the diagrams in Figures 1.3 and 1.4
respectively. What about inverses and the zero vector? The inverse of a vector
should just reverse direction or put the arrow on the other end as in Figure
1.5. The zero vector is pictured in Figure 1.6; it is very hard to see as it has
magnitude 0. If you zoom in a lot, you might think that you’ll be able to see it.
However, even when you zoom in a lot, it still has magnitude 0, so it will be
very hard (yes, impossible) to see. Some people like to use a dot for the zero
vector, but we find our convention to be more accurate.

What should scalar multiplication be? Well, we know it must satisfy repeated
addition such as 2v⃗ = v⃗ + v⃗. The right hand side of this gives an arrow
vector that is twice as long as v⃗ but still in the same direction. Since our scalar
multiplication must agree with this, we will define it to be a scaling of the
length. Thus, αv⃗ is an arrow vector in the direction of v⃗, but of length α times
the length of v⃗ as in Figure 1.7. Convince yourself that this satisfies the rest of
the axioms.

Connection to Rn (for small n).

Now that we’ve established that our arrow vectors actually form a vector space,
how does this relate to Rn for small
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We define “small” in this
context to be 1, 2, or 3.

11 n? Well, if we include the restriction that
our arrow vectors must begin at the origin in R, R2, or R3, then it becomes
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fairly straightforward to show that this is equivalent to how we’ve already
defined the vector spaces R, R2, and R3!

u⃗+ v⃗
v⃗

v⃗ + u⃗ v⃗

u⃗

u⃗

Figure 1.4: Here vector addition is shown to
be commutative; this is sometimes, unimag-
inatively and with overstated importance,
called the Parallelogram Law.

−v⃗v⃗

Figure 1.5: This is a vector v⃗ and its inverse
−v⃗.

Figure 1.6: The zero vector is the arrow with
no magnitude; it is pictured above. It is very
hard to see as it has magnitude 0.

v⃗

αv⃗

−αv⃗

Figure 1.7: Here v⃗ is scalar multiplied by α

and −α for some positive scalar α.

Let us try this with R2, for example. If the arrow vector v⃗ begins at the origin
and extends to the point (x, y) ∈ R2, then we can call this the column vector[

x

y

]
.

Since all vectors begin at the origin, the tip of the arrow vector determines the
vector itself, so this naturally defines a relation from the set of points in R2

to the set of arrows in the plane beginning at the origin. Similarly, one could
define a relation from the set of arrows in the plane beginning at the origin to
the set of points in R2. We’ll get into the extent to which these sets are “the
same” later, but for now, we strongly suspect you’ll agree that these sets are
similar enough to think of them interchangeably.

Exploration 14 Let’s do an example here to see how these arrow vectors agree
with R2.

▶ Draw the vector
[

3

2

]
as described above on the grid below. Include

labels.

▶ Then, from the arrow tip of the vector you just drew, go up one square
and to the left 2.

▶ Draw the arrow vector from the origin to the place you ended above.

This is the sum of the vectors
[

3

2

]
and

[
−2
1

]
, so you should

have drawn the vector
[

1

3

]
. Did you?

Exploration 15 We haven’t mentioned scalar multiplication. Let’s do an ex-
ample with that one.
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▶ Draw the vector v⃗ =

[
3

4

]
on the grid provided.

▶ Now, draw a line from the tip of the arrow down to the positive x-
axis. This gives you a right triangle, and you can find the length of v⃗
using the Pythagorean theorem.12 12:
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If you have forgotten what
knowledge our good friend Pythagoras
imparted, you should Google it. Then
write an essay about how wonderful it is
so that you never forget again.
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Or maybe a tattoo would be bet-
ter. . .

▶ Now use the Pythagorean theorem again and compute the length of

2v⃗ =

[
6

8

]
. Did you get twice the length of v⃗?

In that last exploration, we used the Pythagorean theorem to find the length of
our vectors when viewed as vectors in R2. Well, what about when they’re in
Rn? Although we no longer have our handy arrow vectors for visualization in
Rn for n ≥ 4, we do actually have a way to discuss distances and lengths, so
that some of the geometry that feels natural in R2 and R3 can be extended to
these other cases. The next section will set this up for us.

More Geometry with Rn

As you’ll recall, we gave up our notion of multiplication between two vectors
in favor of scalar multiplication when we defined vector spaces in Definition
1.1.2. That doesn’t stop people from trying to “multiply” two vectors anyway;
there are a couple of different notions of “multiplication of vectors” out there.
At least one of them ends up being pretty useful:

Definition 1.2.1 The inner product is the function · : Rn×Rn → R defined
by relating two vectors to the real number given by summing the products
of like components of the two vectors. That is, given v⃗, u⃗ ∈ Rn, we denote
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the inner product of v⃗ and u⃗ as v⃗ · u⃗, given by

v⃗ · u⃗ =

 v1
...
vn

 ·
 u1

...
un

 = v1u1 + · · ·+ vnun =

n∑
i=1

viui.

Inner product is also synonymously called scalar product13 and dot prod- 13:
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This was either named by
codomain enthusiasts or Professor Igna-
cious J. Scalar whose surname is derived
from the Spanish infinitive that trans-
lates roughly as “to cover with scales,
weigh, and then climb”.

uct.14
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This term was coined
by. . . um. . . some one named Dot?
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Do better, Ricky.

Exploration 16 Let’s see this in action! Let

v⃗ =

 0

1

2

 , u⃗ =

 2

0

3

 , and w⃗ =

 −11
4


be vectors in R3. Then v⃗ · u⃗ = 0+ 0+ 6 = 6 and u⃗ · w⃗ = −2 + 0+ 12 = 10.
Find v⃗ · w⃗.

Exploration 17 Let v⃗ =

[
1

2

]
and u⃗ =

 3

1

1

. Why doesn’t v⃗ · u⃗ make

sense?

Exploration 18 Is the inner product commutative? That is, for vectors v⃗ and
u⃗ in Rn, is it always true that v⃗ · u⃗ = u⃗ · v⃗? Compute an example to illustrate
your conclusion.

It turns out inner product has a lot of nice properties. Since it’s used to define
length, that’s probably a good thing.

Theorem 1.2.1 Let v⃗, u⃗, and w⃗ be vectors in the Rn, and let a be a scalar.
Then

(a) v⃗ · u⃗ = u⃗ · v⃗
(b) (v⃗ + u⃗) · w⃗ = v⃗ · w⃗ + u⃗ · w⃗
(c) (av⃗) · u⃗ = a(v⃗ · u⃗) = v⃗ · (au⃗)
(d) u⃗ · u⃗ ≥ 0 with u⃗ · u⃗ = 0 if and only if u⃗ = 0⃗.

Exploration 19 Let’s walk through the proof of Theorem 1.2.1. We will need
general forms of the vectors v⃗, u⃗, and w⃗ for this, so let

v⃗ =

 v1
...
vn

 , u⃗ =

 u1

...
un

 , and w⃗ =

 w1

...
wn

 .
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(a) First, let’s show that, as you suspected, the inner product is commu-
tative.

v⃗ · u⃗ =v1u1 + · · ·+ vnun

=u1v1 + · · ·+ unvn = u⃗ · v⃗

(b) For this one, first, compute (v⃗ + u⃗) · w⃗.

Now, compute v⃗ · w⃗ + u⃗ · w⃗. (Then, they should be the same!)

(c) Note that cv⃗ =

 cv1
...

cvn

. Compute (cv⃗) · u⃗.

Now, compute c(v⃗ · u⃗).

Lastly, compute v⃗ · (cu⃗).

(d) Note that u⃗·u⃗ = u2
1+· · ·+u2

n. Why must this always be nonnegative?

Now, for the last part, suppose u⃗ · u⃗ = u2
1 + · · · + u2

n = 0. Then,
each of the ui must be zero for 1 ≤ i ≤ n. Thus, u⃗ = 0⃗. Also, if we
compute 0⃗ · 0⃗, we see this must be 0.

Definition 1.2.2 Length (or norm) is the function ∥ · ∥ : Rn → R defined
for any v⃗ ∈ Rn as

∥v⃗∥ =
√
v⃗ · v⃗ =

√
v21 + · · ·+ v2n.

A vector v⃗ ∈ Rn is said to be a unit vector (or to have unit length) if
∥v⃗∥ = 1.

If we’re thinking of our vectors in Rn as having the two properties, magnitude
and direction, then the inner product gives us a way to identify the magnitude
(that is, length) of a vector. Unit vectors, having length 1, are a nice way to
look at just the direction of a vector. The process of making a nonzero vector
into a unit vector by dividing it by its length is sometimes called normalizing
a vector.

Theorem 1.2.2 For any nonzero vector v⃗ ∈ Rn,
v⃗

∥v⃗∥
is a unit vector.
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PROOF. ∥∥∥∥ v⃗

∥v⃗∥

∥∥∥∥ =

√
v⃗

∥v⃗∥
· v⃗

∥v⃗∥
=

√
v⃗ · v⃗√
∥v⃗∥2

=
∥v⃗∥
∥v⃗∥

= 1.

□

Exploration 20 Let v⃗ =

 1

2

2

.

▶ Find the length of the vector v⃗, denoted by ∥v⃗∥.

▶ Find a vector with the same direction as v⃗ but with length 1.

▶ Find a vector with the same direction as v⃗ but with length 5.

We can think of distance between points in Rn (for n ≤ 3). There are some
formulae you may have seen:

▶ For x, y ∈ R, the distance between x and y is

d(x, y) =
√
(x− y)2 = |x− y|,

which is just the usual absolute value in R.

▶ For x = (x1, x2), y = (y1, y2) ∈ R2, we have

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

This is sometimes called “the distance formula”.

▶ For x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3, we have

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Yeah, there’s a pattern there. This is because these are all specific versions of
the same formula. We state it below for vectors, rather than for points.

Definition 1.2.3 Distance is the function dist : Rn × Rn → R defined by
relating two vectors to the length of their difference. That is, given v⃗, u⃗ ∈
Rn, we denote the distance between v⃗ and u⃗ as dist (v⃗, u⃗) given by

dist (v⃗, u⃗) = ∥v⃗ − u⃗∥.

One of the immediate benefits of Definition 1.2.3 is that it works in Rn for
larger15 n. Indeed, it is difficult to imagine what distance looks like or means 15:
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We define “larger” in this con-
text to be an integer greater than 3.in R7. We invite you to try, just don’t spend too much time trying. A better use

of your time would be to make sure Definition 1.2.3 is really the same thing as
our notion of distance between points in Rn for small n.
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Section Highlights

The main idea of this section is to talk about some geometric properties for the
real vector spaces Rn.

▶ A vector space can be formed from a set of arrows in either R2 or
R3 using carefully chosen definitions for vector addition (Figure 1.2)
and scalar multiplication (Figure 1.7).

▶ An arrow vector starting at the origin in R2 can be associated with
the vector in R2 defined by the coordinates of the point at the tip of
the arrow. The same can be done in R3. These can be used to view
arrow vectors as a graphical representation of vectors in R2 and R3.

▶ The length of a vector in R2 or R3 is the actual length of the associ-
ated arrow vector.

▶ The distance between two vectors in R2 (or R3) is the distance be-
tween the tips of the two arrow vectors starting at the origin.

▶ This geometry can be generalized to Rn with the help of an inner
product (dot product). See Definition 1.2.1.

▶ The dot product allows us to extend geometric concepts like the
length of a vector (Definition 1.2.2) and the distance between two
vectors (Definition 1.2.3) to the vector space Rn.
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Exercises for Section 1.2

1.2.1.Draw the vector w⃗1 + w⃗2 on the grid below.

w⃗2

w⃗1

1.2.2.Draw the vector w⃗1 − w⃗2 on the grid below.

w⃗2

w⃗1

1.2.3.Draw the vector r⃗1 + r⃗2 on the grid below.

r⃗2r⃗1

Then, find the column vector representations of r⃗1 and r⃗2 in R2. Use these to find r⃗1 + r⃗2. Does this agree
with what you drew?
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1.2.4.Draw the vector z⃗1 − z⃗2 on the grid below.

z⃗1 z⃗2

Then, find the column vector representations of z⃗1 and z⃗2 in R2. Use these to find z⃗1 − z⃗2. Does this agree
with what you drew?

1.2.5.Let

a⃗ =

[
1

2

]
, b⃗ =

[
−3
4

]
, and c⃗ =

[
5

−6

]
.

Note that a⃗, b⃗, c⃗ ∈ R2, which is a vector space. Simplify the following expressions down to a single vector,
and indicate which properties of Definition 1.1.2 you use at each step.

(a) 3(⃗a− 2⃗b) + 2(⃗b+ c⃗)

(b) 5(c⃗+ 2⃗b)− 2(⃗b− 3a⃗) + 3(⃗a− 3⃗b− 2c⃗)

Sketch each term of each expression (for example, 3(⃗a− 2⃗b) and 2(⃗b+ c⃗) in part a) on the same grid with the
simplified vector.

1.2.6.Use u⃗1 and u⃗2 from the picture below to answer the questions.

u⃗2

u⃗1

(a) Find ||u⃗1|| and ||u⃗2||.

(b) Find a unit vector in R2 in the direction of u⃗1.

(c) Find a vector in R2 in the direction of u⃗1 with length 7.
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1.2.7.Use v⃗1 and v⃗2 from the picture below to answer the questions.

v⃗1 v⃗2

(a) Find ||v⃗1|| and ||v⃗2||.

(b) Find a unit vector in R2 in the direction of v⃗2.

(c) Find a vector in R2 in the direction of v⃗2 with length 2.

1.2.8.Let v⃗ =

 1

2

−2

 and u⃗ =

 3

1

1

.

(a) Find v⃗ · u⃗.

(b) Find v⃗ · (2u⃗).

(c) Find (2v⃗) · u⃗.

(d) Find a nonzero vector w⃗ for which v⃗ · w⃗ = 0.

1.2.9.Let v⃗ =


1

2

−2
0

 and u⃗ =


1

0

1

2

.

(a) Find v⃗ · u⃗.

(b) Find a nonzero vector w⃗ for which v⃗ · w⃗ = 0.

1.2.10.Let’s define a different product between vectors in R3. Let this product, denoted by ⊠, be given by v1
v2
v3

⊠

 u1

u2

u3

 = 2v1u1 + 4v2u2 + 2v3u3.

Determine whether each property in Theorem 1.2.1 holds for ⊠.
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1.2.11.Let’s again define a different product between vectors in R3. Let this product, denoted by /, be given by v1
v2
v3

/

 u1

u2

u3

 = v1u3 + v2u2 + v3u1.

Determine whether each property in Theorem 1.2.1 holds for /.
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1.3 Linear Independence and Span

Let’s detour for a minute and talk about chess. A chessboard is an 8 by 8 grid,
and there are several different pieces with rules about how they can move. For
instance, the rook can move forward, backward, left or right, but not diago-
nally. The pawn can only move forward or diagonally forward if it is capturing
another piece. Now, we come to the reason for our detour. Which spaces on
the board can be reached by moving any piece using its specific rules? For
the rook, we can reach any space on the board by moving up and over in the
grid pattern. However, for the pawn, the spaces behind its starting space are
unobtainable since it can only move forward.

Now, let’s go back to vector spaces. Suppose we start at a vector v⃗ in a vector
space V , and we are allowed to use our operations of scalar multiplication and
vector addition to “move around” the vector space with v⃗. What other vectors
can we obtain this way? What if we are only allowed to add certain other
vectors from V ? This sounds fun like chess, right?16 16:
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One of the authors finds this
much more fun than chess.

Linear Combinations and Span

Since vector spaces are closed under vector addition and scalar multiplication,
we can do both of these operations as many times as we want to vectors in a
vector space V and still end up with a vector in V . This is so convenient that
it gets its own name and definition:

Definition 1.3.1 Let V be a vector space, v⃗1, . . . , v⃗p ∈ V , and a1, . . . , ap ∈
R. The vector in V

(1.8) a1v⃗1 + · · ·+ apv⃗p

is called a linear combination of the vectors v⃗1, . . . , v⃗p with weights (or
scalars) a1, . . . , ap.

Exploration 21 Consider the vectors

v⃗1 =

 1

2

−1

 and v⃗2 =

 1

0

1

 .

Now pick your two favorite real numbers. Did you pick 3 and 4? Great! Here’s
a linear combination of v⃗1 and v⃗2:

3v⃗1 + 4v⃗2 = 3

 1

2

−1

+ 4

 1

0

1

 =

 3 + 4

6 + 0

−3 + 4

 =

 7

6

1

 .

▶ Compute the linear combination 4v⃗1 + 3v⃗2.

Suppose we are instead given a vector and asked whether or not it is a linear
combination of some set of vectors.17 How should this be handled? Well, we 17:
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This is just like our chess dis-
cussion! Which spaces can be reached
with the allowed “moves?”
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would need to find the appropriate scalars to make it a linear combination or
show that no such scalars are possible. Let’s see an example of this.

▶ Is x⃗ =

 3

4

−1

 a linear combination of v⃗1 and v⃗2?

Well, if it is, then there exist a, b ∈ R such that av⃗1 + bv⃗2 = x⃗. This
means

a

 1

2

−1

+ b

 1

0

1

 =

 3

4

−1


Using the definitions of scalar multiplication and vector addition for
R3, we can see that this means a+ b

2a

−a+ b

 =

 3

4

−1

 .

This gives us equations a+ b = 3, 2a = 4 and −a+ b = −1. These
solve to get a = 2 and b = 1. Thus,

2

 1

2

−1

+ 1

 1

0

1

 =

 3

4

−1

 ,

which is true!

▶ Is y⃗ =

 1

1

1

 a linear combination of v⃗1 and v⃗2?

Again, if it is, there exist a, b ∈ R such that av⃗1 + bv⃗2 = y⃗. This
means

a

 1

2

−1

+ b

 1

0

1

 =

 1

1

1


Just like before, this gives us equations. Here, they are a + b = 1,
2a = 1 and −a + b = 1. However, unlike last time, these equations
have no common solution; note that from the second equation, we
have a = 1/2, which implies b = 1/2 from the first equation, but
these values do not work in the third equation. Thus, we conclude
that y⃗ is not a linear combination of v⃗1 and v⃗2.

▶ Is z⃗ =

 1

1

0

 a linear combination of v⃗1 and v⃗2?
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Example 1.3.1 Now that we’ve seen examples in R3, let’s see how things
change in P3. Consider the vectors

p⃗1 = 1 + x, p⃗2 = x, p⃗3 = x3

in P3.
▶ Is q⃗ = 7−x+9x3 a linear combination of p⃗1, p⃗2, and p⃗3? Yes! To

see that, we should solve for a, b, c ∈ R such that ap⃗1+bp⃗2+cp⃗3 =

q⃗. That is,

a(1 + x) + b(x) + c(x3) = 7− x+ 9x3.

Rearranging the left hand side gives us

a+ (a+ b)x+ cx3 = 7− x+ 9x3.

Solving for these scalars then gives us a = 7, b = −8, and c = 9.
Then

q⃗ = 7− x+ 9x3 = 7p⃗1 − 8p⃗2 + 9p⃗3

is a linear combination of the three vectors p⃗1, p⃗2, and p⃗3.
▶ Now, let’s consider

v⃗ = 7− x+ x2 + 9x3.

Is v⃗ a linear combination of p⃗1, p⃗2, and p⃗3? Nope! No sum or
rescaling of p⃗1, p⃗2, and p⃗3 will produce the x2 term in v⃗.

We’ve spent a bit of time now asking whether or not a vector is a linear com-
bination of some set of vectors, so let’s just formalize this a bit.

Definition 1.3.2 Let V be a vector space and {v⃗1, . . . , v⃗p} ⊆ V . The span
of v⃗1, . . . , v⃗p, denoted Span {v⃗1, . . . , v⃗p}, is the set of all linear combina-
tions of v⃗1, . . . , v⃗p. That is,
(1.9)

Span {v⃗1, . . . , v⃗p} = {a1v⃗1 + · · ·+ apv⃗p : ai ∈ R for i = 1, . . . , p} .

Exploration 22 Is x⃗ =

 3

4

−1

 in Span


 1

2

−1

 ,

 1

0

1

?

Hint: This is another way to ask a question we’ve already asked, so you should
be able to answer it by looking back at a previous example.

Example 1.3.2 Let’s revisit the vectors in Example 1.3.1. That is, consider
again the vectors

p⃗1 = 1 + x, p⃗2 = x, p⃗3 = x3

in P3. Now, what is Span {p⃗1, p⃗2, p⃗3}? Well, let’s figure it out.

Span {p⃗1, p⃗2, p⃗3} = {ap⃗1 + bp⃗2 + cp⃗3 : a, b, c ∈ R}

= {a(1 + x) + b(x) + c(x3) : a, b, c ∈ R}

= {a+ (a+ b)x+ cx3 : a, b, c ∈ R}.
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Note here that we have coefficients a, a+ b, and c. There is obviously some
relationship between a and a+ b, but in this case, the relation doesn’t really
matter. Because b is not related to a or c and can be any real number, we
could actually replace a + b with a new variable d = a + b that can be any
real number. Then we get

Span {p⃗1, p⃗2, p⃗3} = {a+ dx+ cx3 : a, d, c ∈ R}.

This makes it clear that the span is all polynomials in P3 without an x2 term.

We’ve seen in these explorations and examples how to determine whether a
specific vector is or is not in the span of some set of vectors. Then, this last
example gave us some idea about how to compute span algebraically. Now,
let’s talk a bit about the geometry and the bigger picture of what’s in a span.

Example 1.3.3 First of all, what does the span of a single vector “look like?”
Well, to picture anything, we should really think about the case of R2 or R3.
Since R2 is much easier to draw, let’s start there. Let’s look at the vector

v⃗ =

[
1

1

]
. Then Span {v⃗} is just the set of scalar multiples of v⃗, which

really forms the line that contains the vector v⃗. See Figure 1.8.

Span {v⃗}

v⃗

Figure 1.8: The single vector v⃗ is shown with
a solid arrow line, and its span, Span {v⃗} is
shown with a dashed arrow line.

In the example above, note that we chose a nonzero vector v⃗. What’s Span
{
0⃗
}

?

Well, it’s just 0⃗ since any scalar multiple of 0⃗ is just again 0⃗. Now, let’s see an
example with two nonzero vectors in R3.

Example 1.3.4 Here are two vectors

u⃗1 =

 1

0

2

 and u⃗2 =

 2

0

1


in R3. Then

Span {u⃗1, u⃗2} = {a1u⃗1 + a2u⃗2 : ai ∈ R}

=

a1

 1

0

2

+ a2

 2

0

1

 : ai ∈ R


▶ First, note that a valid choice for a2 is 0. Then Span {u⃗1, u⃗2} con-

tains any scalar multiple of u⃗1, including u⃗1 itself. Geometrically,
this is the line containing u⃗1. It’s also Span {u⃗1}! The same can
be done for u⃗2; refer to Figure 1.9.

▶ What should we expect for the span of two vectors then? Good
question. Start with Span {u⃗1} = {a1u⃗1 : a1 ∈ R}; to get
Span {u⃗1, u⃗2} = {a1u⃗1 + a2u⃗2 : ai ∈ R}, we need to add any
scalar multiple of u⃗2 to any scalar multiple of u⃗1. This means
we’re going to get Span {u⃗2} through any point of Span {u⃗1}; in
Figure 1.9, this is the red lines through any point on one of the blue
lines, yielding the plane containing the two vectors u⃗1 and u⃗2.
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Span {u⃗1}

Span {u⃗2}

u⃗2

u⃗1

u⃗1

u⃗2

Figure 1.9: In the first image, Span {u⃗1} is the dashed line, and Span {u⃗2} is the dotted line; the second is Span {u⃗1, u⃗2}
.

Here’s another fun question. Are either of the vectors 1

1

2

 and

 2

1

1


in Span {u⃗1, u⃗2}? Nope. Note that any linear combination of u⃗1 and u⃗2

will have a zero in the second component. Neither of the given vectors have
zero in the second component, so neither is a linear combination of u⃗1 and
u⃗2. Thus, neither is in Span {u⃗1, u⃗2}.

Is the span of two vectors in R3 always a plane? Again, good question. If one
of your vectors is the zero vector, then you just get the span of the other vector,
so the answer is firmly “no.” Ok. Fine. What about the span of two nonzero
vectors in R3? Is that always a plane?
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Example 1.3.5 Here are two vectors

v⃗1 =

 1

0

2

 and v⃗2 =

 2

0

4

 .

in R3. Note that v⃗2 is a scalar multiple of v⃗1. Specifically, 2v⃗1 = v⃗2. Watch
what happens now to the span of these two vectors:

Span {v⃗1, v⃗2} = {a1v⃗1 + a2v⃗2 : a1, a2 ∈ R}
= {a1v⃗1 + a2(2v⃗1) : a1, a2 ∈ R}
= {a1v⃗1 + 2a2v⃗1 : a1, a2 ∈ R}
= {(a1 + 2a2)v⃗1 : a1, a2 ∈ R}
= {av⃗1 : a ∈ R} = Span {v⃗1} .

Here, we used the fact that any a ∈ R can be realized as a1 + 2a2 for
a1, a2 ∈ R. Note that this is equivalent to showing {a1 +2a2 : a1, a2 ∈ R}
is equal to R.
What does this mean for the span? Since v⃗2 is a scalar multiple of v⃗1, there
is redundancy in the span of the vectors. Thus, the span of these vectors will
form a line, not a plane.

In the example above, the fact that one vector was a scalar multiple of the other
gave us redundancy, so we were able to more efficiently write Span {v⃗1, v⃗2}
as Span {v⃗1}. We could also have written it as Span {v⃗2}. When can we not
do this? We definitely can’t remove all the vectors, so is there a condition that
says you can’t remove a vector?

Linear Independence

Yes! This one! This one! Notions of dependence and independence between
vectors can be used to detect the kind redundancy (or the lack of it) we saw in
the previous example.

Definition 1.3.3 A set of vectors {v⃗1, . . . , v⃗n} ⊆ V is said to be linearly
independent if

(1.10) a1v⃗1 + · · ·+ anv⃗n = 0⃗

only when a1 = · · · = an = 0. The set {v⃗1, . . . , v⃗n} ⊆ V is said to be
linearly dependent if there are scalars a1, . . . , an ∈ R, not all 0, such that

(1.11) a1v⃗1 + · · ·+ anv⃗n = 0⃗.

Before we explore how this affects the span of a set of vectors, let’s spend
some time getting comfortable with the definition.

Example 1.3.6 Consider the vectors

v⃗1 =

 2

0

1

 , v⃗2 =

 1

1

0

 , and v⃗3 =

 −11
0

 .
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Is the set {v⃗1, v⃗2, v⃗3} linearly independent or linearly dependent? To answer
this, suppose there exist scalars a, b, c ∈ R such that av⃗1 + bv⃗2 + cv⃗3 = 0⃗.
If we can find nonzero a, b, and c, then we know they are dependent. If we
cannot, then they are independent. Let’s try to find them!

a

 2

0

1

+ b

 1

1

0

+ c

 −11
0

 =

 0

0

0

 .

This leads us to the equations 2a+ b− c = 0, b+ c = 0, and a = 0. These
equations have the unique solution a = b = c = 0, so the set is linearly
independent.

Example 1.3.7 Let’s replace v⃗3 above with a new vector we’ll call v⃗4 and
consider the vectors

v⃗1 =

 2

0

1

 , v⃗2 =

 1

1

0

 , and v⃗4 =

 4

2

3

 .

Now, is the set {v⃗1, v⃗2, v⃗4} linearly independent or linearly dependent? Sup-
pose that a, b, c ∈ R are scalars such that av⃗1 + bv⃗2 + cv⃗4 = 0⃗. That is,

a

 2

0

1

+ b

 1

1

0

+ c

 4

2

1

 =

 0

0

0

 .

This gives us the equations 2a + b + 4c = 0, b + 2c = 0, and a + c = 0.
The latter two simplify to give b = −2c and a = −c. Substituting these
into the first equation gives us 0 = 0, which is of course true but seemingly
unhelpful. However, recall that if we get an equation like 0 = 0, this often
suggests that there are multiple solutions, and we can try to find one by
choosing a value for one of the variables. If we choose c = 1, we will
have a = −1 and b = −2. We can quickly check that this works to give
us a solution to av⃗1 + bv⃗2 + cv⃗4 = 0⃗ where the scalars are nonzero, and
therefore, the set is linearly dependent. Note here that we could have made
a different choice for c and found a different solution.

Exploration 23 Now it’s your turn! Here are three vectors. Are they linearly
independent or linearly dependent?

u⃗1 =

 1

0

1

 , u⃗2 =

 −11
0

 , and u⃗3 =

 0

1

1

 .

Exploration 24 Let’s explore the situation when we have a set with two vec-
tors in it.
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▶ Let

v⃗1 =

 1

2

3

 , v⃗2 =

 3

6

9

 , v⃗3 =

 −20
0

 , v⃗4 =

 0

0

0

 .

Now, determine whether the following sets are linearly independent
or linearly dependent. Hint: exactly two of these sets are linearly
dependent.

(a) {v⃗1, v⃗2}

(b) {v⃗1, v⃗3}

(c) {v⃗1, v⃗4}

▶ Let V be a vector space and u⃗, v⃗ ∈ V . Is there an easy way to tell
if {u⃗, v⃗} is a linearly independent set? In other words, is there an
advantage to only dealing with two vectors when determining linear
independence?

▶ Above, the vector v⃗4 is the zero vector in R3. Can the zero vector
ever be included in a linearly independent set?

Exploration 25 Consider the vectors

v⃗1 =

 1

−1
3

 , v⃗2 =

 1

0

4

 , v⃗3 =

 −21
1

 , v⃗4 =

 1

0

0

 .

▶ We can write v⃗1 as a linear combination of v⃗2, v⃗3, and v⃗4. To do this,
solve for a, b, c ∈ R so that 1

−1
3

 = a

 1

0

4

+ b

 −21
1

+ c

 1

0

0

 .
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▶ Now, rearrange to see that v⃗1− av⃗2− bv⃗3− cv⃗4 = 0⃗. What does this
tell us about the set {v⃗1, v⃗2, v⃗3, v⃗4}?

Did you say the vectors are linearly dependent? That is correct!!18 This works 18:
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Confetti!! Picture lots of col-
orful confetti!in general and gives us another way to think about linear dependence. . . Now,

let’s prove it!

Theorem 1.3.1 A set {v⃗1, . . . , v⃗p} of two or more vectors, is linearly de-
pendent if and only if one of the vectors is a linear combination of the other
vectors.

The “if and only if” bit means this is a biconditional statement. P if and only if
Q means precisely the following two things: P implies Q and Q implies P .19 19:
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Biconditional statements are
great. It’s a logical two-for-one deal. In
one statement, you get two logical im-
plications!

This means that these conditions are logically equivalent. so we can use this
as a test of dependence/independence. This is fairly common in mathematics;
an “if and only if” is usually a vehicle for an alternative way of thinking about
something.

PROOF. Suppose {v⃗1, . . . , v⃗p} is a linearly dependent set. Then there are
weights a1, . . . , ap ∈ R not all zero such that

a1v⃗1 + · · ·+ apv⃗p = 0⃗.

We can assume without loss of generality20 that it is the first weight that is 20:
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“Without loss of generality”
(sometimes abbreviated WLOG) means
we are making a new, specific assump-
tion that does effect the generality of the
proof process. It often involves simply
reordering or relabelling things.
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Good point, RIcky, but did you no-
tice why we were able to assume one of
our scalars was nonzero?

nonzero, so a1 ̸= 0. Thus,

a1v⃗1 = −a2v⃗2 − · · · − apv⃗p.

Since a1 ̸= 0, we may multiply both sides of the equation by 1/a1, so

v⃗1 =
−a2
a1

v⃗2 + · · ·+
−ap
a1

v⃗p.

Thus, v1 is a linear combination of the other vectors.

Now suppose one of the vectors in the set {v⃗1, . . . , v⃗p} is a linear combination
of the other vectors. Again, we may assume without loss of generality that
the guilty vector is the first one; that is, v1 is a linear combination of the other
vectors. Then

v⃗1 = a2v⃗2 + · · ·+ anv⃗p.

We may rewrite this as

v⃗1 − a2v⃗2 − · · · − anv⃗p = 0⃗.

The weight on v⃗1 is not zero, so by definition, {v⃗1, . . . , v⃗p} is a linearly de-
pendent set. □

With this theorem in hand, we are ready now to talk about how linear indepen-
dence affects our computations of the span of a set of vectors.
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More Span

Let’s start small, but not too small. Three vectors should be enough. Suppose
{v⃗1, v⃗2, v⃗3} is a linearly dependent set of vectors in a vector space V . Then
by Theorem 1.3.1, we know one of these vectors can be written as a linear
combination of the others. For our purposes, it’s okay to suppose that v⃗1 is a
linear combination of v⃗2 and v⃗3. That is,

v⃗1 = bv⃗2 + cv⃗3

for some b, c ∈ R.21 Now, let’s see how this connects to span. 21:
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It’ll be clear in just a second
why we skipped a. . .

Span {v⃗1, v⃗2, v⃗3} = {a1v⃗1 + a2v⃗2 + a3v⃗3 : a1, a2, a3 ∈ R}
= {a1(bv⃗2 + cv⃗3) + a2v⃗2 + a3v⃗3 : a1, a2, a3 ∈ R}
= {(a1b+ a2)v⃗2 + (a1c+ a3)v⃗3 : a1, a2, a3 ∈ R}
= {d1v⃗2 + d2v⃗3 : d1, d2 ∈ R}
= Span {v⃗2, v⃗3} .

Here, we use the fact that for any a1, b, c ∈ R, the sets {a1b + a2 : a2 ∈ R}
and {a1c+ a3 : a3 ∈ R} are both equal to R.

Let’s talk a bit about what we just did. We started with the span of three
vectors, and we were able to reduce to a set of two vectors that has the same
span as the original set. This is something we can do in general.

Theorem 1.3.2 If S is a linearly dependent set of vectors in some vec-
tor space V , then there is some vector v⃗ in S such that Span {S} =

Span {S\{v⃗}}.

The proof of this theorem is very similar to the discussion preceding it, so
we’ll leave the details to the exercises for now.

Exploration 26 Consider the following vectors

v⃗1 =


1

1

0

1

 , v⃗2 =


−1
1

0

−1

 , v⃗3 =


0

3

0

0

 , v⃗4 =


0

0

1

1

 .

▶ The set S = {v⃗1, v⃗2, v⃗3, v⃗4} is linearly dependent. Find scalars
a, b, c, d ∈ R, not all 0, so that av⃗1 + bv⃗2 + cv⃗3 + dv⃗4 = 0⃗. Hint:
There isn’t a unique answer. You’ll need to make a choice for one of
the variables.

▶ From the equation above, it should be possible to identity a vector
in S that could be removed without changing the span of the set of
vectors. Actually, there are three vectors that could be chosen as the
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one removed! The only one that cannot be removed is v⃗4. Why is
this?

Example 1.3.8 Let’s see how this looks in P2. Consider the vectors

p⃗1 = 1 + x2, p⃗2 = x, p⃗3 = 1 + 3x+ x2.

The set {p⃗1, p⃗2, p⃗3} is linearly dependent. To see this, we will find scalars
a, b, c ∈ R, not all zero, so that ap⃗1 + bp⃗2 + cp⃗3 = 0. That is,

a(1 + x2) + bx+ c(1 + 3x+ x2) = 0.

Rearranging, we have

(a+ c) + (b+ 3c)x+ (a+ c)x2 = 0.

Therefore a+ c = 0 and b+3c = 0. This gives us a = −c and b = −3c. If
we choose c = 1, we can see that p⃗3 = p⃗1 + 3p⃗2. Now, we have realized p⃗3
as a linear combination of p⃗1 and p⃗2, but we could rearrange this equation to
realize p⃗1 as a linear combination of p⃗2 and p⃗3 or p⃗2 as a linear combination
of p⃗1 and p⃗3. All of this tells us that Span {p⃗1, p⃗2, p⃗3} = Span {p⃗1, p⃗2} =
Span {p⃗2, p⃗3} = Span {p⃗1, p⃗3}.

Let’s talk about what Theorem 1.3.1 tells us about the span of a linearly in-
dependent set of vectors. Suppose S is a linearly independent set of vectors
and v⃗ ∈ S. By Theorem 1.3.1, we know v⃗ is not a linear combination of other
vectors in S, since if it were, the set would be linearly dependent. Thus, if we
were to compare Span {S} with Span {S\{v⃗}}, these would be different! In
particular, v⃗ ∈ Span {S}, but v⃗ /∈ Span {S\{v⃗}}.

Section Highlights

▶ A linear combination of a set of vectors is a sum of scalar multiplied
vectors from the set. See Definition 1.3.1.

▶ The set of all possible linear combinations of a set of vectors is the
span of that set of vectors. See Definition 1.3.2.

▶ A system of equations can be set up and solved to determine whether
a set of vectors is linearly independent. See Example 1.3.6 and Ex-
plorations 23 and 24.

▶ A set of vectors can be shown to be linearly dependent by finding
one vector as a linear combination of the others. See Example 1.3.6
and Exploration 25.

▶ A system of equations can be set up and solved to determine whether
the vector v⃗ in Span {v⃗1, . . . , v⃗n}. See Exploration 22.

▶ A linearly dependent set of vectors contains vectors that can be re-
moved without altering the span of that set of vectors. The ones that
can be removed are determined by dependence relations. See Explo-
ration 26.
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Exercises for Section 1.3

1.3.1.Some linear combinations are given, but they are missing some information. Fill in the missing information.

(a) In R2,

3

[
−1

]
+ 4

[
1

0

]
=

[
−2
−3

]
.

(b) In R2,

3

[
1

−1

]
+

[
2

1

]
=

[
7

−1

]
.

(c) In R3,

2

 1

−2

− 2

 2

2

 =

 −20
−4

 .

(d) In P2,
3(1 + x) + 2(1− x− x2)− ( ) = 5− 2x− 3x2.

1.3.2.Find the linear combination 5x⃗+ 3y⃗ − 2z⃗ for the vectors x⃗,y⃗, and z⃗ given below.

(a) x⃗ = 3x+ 2x2, y⃗ = 1 + x2, z⃗ = 3 in P2

(b) x⃗ =

[
1

−1

]
, y⃗ =

[
1

0

]
, z⃗ =

[
−2
−1

]
in R2

(c) x⃗ =

 1

0

2

, y⃗ =

 0

−3
1

, z⃗ =

 −2−1
2

 in R3

1.3.3.Determine whether v⃗ =

 1

0

2

 is in each span below:

(a) Span


 1

1

1


(b) Span


 6

0

2


(c) Span


 2

0

4


(d) Span


 6

0

2

 ,

 1

1

2



(e) Span


 6

0

2

 ,

 0

0

2


(f) Span


 6

0

2

 ,

 0

0

2

 ,

 1

0

0


(g) Span


 6

0

2

 ,

 3

0

2

 ,

 0

1

0


(h) Span


 6

0

2

 ,

 0

0

2

 ,

 1

0

1
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1.3.4.Consider the set Span


 1

−1
2

 ,

 0

0

2

. Which of the vectors below are in this set?

(a)

 1

−1
2



(b)

 1

−1
2

+

 0

0

4



(c)

 3

3

0



(d)

 3

−3
0



(e)

 −20
2



(f)

 −22
2



(g)

 −22
a

 for any a ∈ R

(h)

 b

−b
a

 for any a, b ∈ R

1.3.5.Let u⃗ and v⃗ be vectors in some vector space V . Explain why u⃗ and v⃗ are both vectors in Span {u⃗, v⃗}.

1.3.6.Suppose S = {v⃗1, . . . , v⃗n} is a subset of vectors from a vector space V .

(a) Suppose u⃗ ∈ Span {S}. Explain how this implies Span {u⃗} ⊆ Span {S}.

(b) Suppose u⃗, v⃗ ∈ Span {S}. Explain how this implies Span {u⃗, v⃗} ⊆ Span {S}.

1.3.7.Let u⃗ and v⃗ be vectors in some vector space V .

(a) Explain why u⃗+ v⃗ and u⃗− v⃗ are in Span {u⃗, v⃗}.

(b) Show that u⃗ and v⃗ are both vectors in Span {u⃗+ v⃗, u⃗− v⃗}.

(c) What can you conclude then about Span {u⃗, v⃗} and Span {u⃗+ v⃗, u⃗− v⃗}?

1.3.8.Let H be the set of all vectors in R3 of the form
 −a1 − 3a2

4a1
a1 − 2a2

 : a1, a2 ∈ R

 .

Rewrite this as a linear combination of two vectors with coefficients a1 and a2. Use this to find two vectors
v⃗1 and v⃗2 such that H = Span {v⃗1, v⃗2}.

1.3.9.Let K be the set of all vectors in R3 of the form
 a1 + a2 + a3

4a1
a1 − 2a2 − 2a3

 : a1, a2, a3 ∈ R

 .
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Rewrite this as a linear combination of three vectors with coefficients a1, a2 and a3. Then find two vectors
v⃗1 and v⃗2 such that K = Span {v⃗1, v⃗2}.

1.3.10.Let J be the set of all vectors in R3 of the form
 −a1 − 3a2

4a3
a1 − 2a2

 : a1, a2, a3 ∈ R

 .

Find vectors v⃗1, v⃗2 and v⃗3 such that J = Span {v⃗1, v⃗2, v⃗3}.

1.3.11.Determine whether the sets below are linearly independent or linearly dependent.

(a)
{[

1

1

]
,

[
1

0

]}

(b)
{[

1

−1

]
,

[
3

0

]
,

[
3

4

]}

(c)


 1

0

0

 ,

 −10
1

 ,

 1

0

1


(d)


 −10

1

 ,

 1

0

1


(e)


 1

0

0

 ,

 0

1

1

 ,

 0

1

−1



(f)


 1

1

0

 ,

 1

1

1

 ,

 0

1

−1


(g)

{
1 + x, x+ x2, x2

}
(h)

{
2 + 2x, 1− x+ x2, 4 + 2x2

}
(i)
{
1 + x+ x2, x+ x2, x2

}
(j)
{
1 + x, 2x, 1− x2, 1 + x2

}
(k)

{
1 + x, 2x+ x2, x2, 1

}

1.3.12.Suppose {v⃗1, v⃗2, v⃗3} is a linearly independent set in a vector space V . Which of the following sets must also
be linearly independent? Give a complete argument to support your conclusion.

(a) {v⃗2, v⃗3, v⃗1}

(b) {v⃗1, v⃗3}

(c) {v⃗1, v⃗1 + v⃗2, v⃗2}

(d) {v⃗1, v⃗1 + v⃗2}

(e) {v⃗1 − v⃗2, v⃗2 − v⃗3, v⃗1 − v⃗3}

(f) {v⃗2 − v⃗3, v⃗1 − v⃗2}

1.3.13.The set of vectors below is linearly dependent. However, it contains many linearly independent subsets. Find
all nonempty linearly independent subsets. There should be 11.v⃗1 =

 1

−1
3

 , v⃗2 =

 −22
−6

 , v⃗3 =

 0

1

1

 , v⃗4 =

 1

0

0


Circle the ones that have the same span as the original set. (Hint: They should all be the same size.)
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1.3.14.For each set S below, reduce the set to a linearly independent one that has the same span.

(a) S =


 2

1

0

 ,

 4

2

0

 ,

 1

0

1

 ,

 5

1

3



(b) S =




2

0

0

1

 ,


1

1

0

1

 ,


1

1

0

−1

 ,


−1
1

0

2




(c) S =


 2

0

0

 ,

 1

2

0

 ,

 1

1

0

 ,

 −11
0



(d) S =




1

1

0

1

 ,


1

1

1

1

 ,


0

0

1

0

 ,


3

1

0

1




In Problems 1.3.15, 1.3.16, and 1.3.17 below, determine what the span of the vectors looks like geometrically.
Explicitly, find whether it is a point, a line, a plane, or all of R3.

1.3.15.Let v⃗ =

 2

1

0

 and u⃗ =

 −10
1

. Determine what Span {v⃗, u⃗} looks like geometrically.

1.3.16.Let w⃗ =

 2

1

0

 and z⃗ =

 4

2

0

. Determine what Span {w⃗, z⃗} looks like geometrically.

1.3.17.Let u⃗ =

 2

1

0

, w⃗ =

 0

1

0

, z⃗ =

 4

2

0

. Determine what Span {u⃗, w⃗, z⃗} looks like geometrically.

1.3.18.Consider the following vectors in P2:

p⃗1 = π + π2x+ π3x2

p⃗2 = π − x2

p⃗3 = π2 − πx2.

Show that {p⃗1, p⃗2, p⃗3} is a linearly dependent set.

1.3.19.Let

p⃗1 = x+ x3

p⃗2 = 1 + x2

p⃗3 = 1 + x

be vectors in P4. Describe Span {p⃗1, p⃗2, p⃗3} algebraically (in set notation) and in words.

1.3.20.Let w⃗ be an arbitrary vector in R2. Then w⃗ =

[
a

b

]
for some a, b ∈ R. Find a way to write w⃗ as a linear

combination of the vectors v⃗1 =

[
1

1

]
and v⃗2 =

[
1

−1

]
. Explain why R2 = Span

{[
1

1

]
,

[
1

−1

]}
.

1.3.21.Show that R2 = Span

{[
2

−1

]
,

[
7

0

]}
. (Hint: Follow the technique of the previous exercise.)
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1.3.22.Let w⃗ be an arbitrary vector in R3. Then w⃗ =

 a

b

c

 for some a, b, c ∈ R. Find a way to write w⃗

as a linear combination of the vectors v⃗1 =

 1

1

0

, v⃗2 =

 1

−1
0

, and v⃗3 =

 0

1

1

. Conclude that

R3 = Span


 1

1

0

 ,

 1

−1
0

 ,

 0

1

1

.

1.3.23.Let H = Span


 1

1

0

 ,

 1

−1
0

 and J = Span


 1

0

0

 ,

 0

1

0

. Show that H = J .

1.3.24.Let H = Span


 1

1

1

 ,

 1

−1
0

 and J = Span


 1

0

0

 ,

 0

1

0

. Show that H ̸= J .
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1.4 Subspaces

Vector spaces are sometimes too big. Oftentimes, the collection of vectors you
actually care about is only a small piece of the vector space with which you are
stuck. In some cases, a collection of vectors in a vector space turns out to be
a vector space itself, and this can be very convenient. Who needs extraneous
vectors just hanging around everywhere? You know what’s not convenient?
Verifying all ten axioms to show that the smaller set of vectors is a vector
space.22 22:
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I don’t like verifying all ten ax-
ioms. It takes too long.
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Verifying axioms is a wonderful
exercise that helps build understanding.

Ready for some good news?

Definition 1.4.1 A subspace of a vector space V is a subset H of V with the
following three properties:

▶ The zero vector is in H .
▶ (Closure under vector addition) For any v⃗ and u⃗ in H , the vector

v⃗ + u⃗ is also in H .
▶ (Closure under scalar multiplication) For any v⃗ in H and any a in

R, the vector av⃗ is also in H .
Note that vector additional and scalar multiplication for H are the same as
for V .

It only makes sense that a subspace is a vector space. Thus, if you want to
show a set is a vector space and it’s actually a subset of some vector space,
then you can just use this definition instead to show it is a subspace, right?
That is definitely better than verifying all those axioms in the definition of a
vector space. It really seems too good to be true, though, right? Well, we were
due for some good news; it is true:

Theorem 1.4.1 A subspace of a vector space is itself a vector space.

PROOF. The three axioms for a subspace take care of three of our vector space
axioms. Then the addition and scalar multiplication are the same as for the
ambient vector space, and all the other properties are inherited. □

“Inherited” is an interesting math word, and it works a lot like one might ex-
pect. If H is a subset of a vector space V with the same operations as V ,
then properties of V are oftentimes also passed on to H , like from parent to
offspring. For example, if V has properties such as commutativity and asso-
ciativity for some operations, then provided H is closed under the operations,
they still hold for H because the operations on H are the same as those on V .

Example 1.4.1 The set

H =


 v1

v2
v3

 ∈ R3 : v1 + v2 + v3 = 0

 .
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It turns out H is a subspace of R3, so H is a vector space. You can check
this later, but for now, just trust us that it’s true. Then 1

−1
0

 ∈ H and

 1

−1
1

 /∈ H.

This is because H is the set of vectors in R3 whose components sum to zero,
and we have that 1 + (−1) + 0 = 0 but 1 + (−1) + 1 ̸= 0. Thus, we can
also check, more generally, that

H0 =


 a

−a
0

 ∈ R3 : a ∈ R

 ⊆ H, and


 a

−a
1

 ∈ R3 : a ∈ R

 ⊈ H.

Since H0 is a subset of the vector space H with the same operations as H ,
we would now only need to check the three axioms from the definition of
subspace to verify that H0 is also a vector space. It inherits the remaining
vector space properties from H!

Now, before doing anything interesting, we should note that any vector space
V has two uninteresting subspaces. It’s not hard to check23 that V is a subspace 23:
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You should check.
of itself. How does one check? Just verify each of the axioms24 in Definition

24:
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You really should do this, too.1.4.1 for V . The other uninteresting subspace is the zero vector. Yep, this is
the only finite set we’ll get in this course that turns out to be a vector space.
It’s also a subspace of any vector space. You should check that, too, with
Definition 1.4.1. A reasonable response to the question “How many subspaces
does vector space V have?” is “At least two.”25 It turns out, however, that there 25:
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Unless V = {0⃗}.
are often26 many more.

26:
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When V = R, there are ex-
actly these two. Maybe we should show
this, though. Exercise!
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You mean like running laps?
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No, at the end of the section. A
homework exercise!

Example 1.4.2 Let’s start off with the familiar vector space P2. Consider
all polynomials of the form a + bx for any a, b ∈ R. Let’s call this set H
for convenience. H is a subset of P2 since P2 is all polynomials of the form
a+ bx+ cx2 for a, b, c ∈ R, and we could let c = 0. Also, it is a subspace
of P2:

▶ H contains the zero vector 0 since we could let a = b = 0.
▶ Let a1 + b1x and a2 + b2x be any polynomials in H . Then

(a1 + b1x) + (a2 + b2x) = (a1 + a2) + (b1 + b2)x ∈ H

since (a1 + a2) and (b1 + b2) are again in R. Thus, H is closed
under addition.

▶ Let k ∈ R. Then k(a + bx) = ka + kbx ∈ H since ka, kb ∈ R,
so H is closed under scalar multiplication.

Exploration 27 Now it’s your turn! Let J = {a + cx2 : a, c ∈ R}. We see
that these will all be either degree 2 or 0 polynomials, so J ⊆ P2. Show that
all 3 of the axioms for a subspace are also satisfied.

▶ What should a and c be to see that J contains the zero vector?
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▶ Let a1+ c1x
2 and a2+ c2x

2 be any polynomials in J . Show the sum
of these two polynomials is still in J .

▶ Let k ∈ R. Show that k(a+ cx2) ∈ J for any a+ cx2 ∈ J .

Let’s consider the two subspaces H and J of P2 for a bit. How many of you
noticed that H is really P1? How often does something like this happen? Well,
for k ≤ n, we can always show that Pk is a subspace of Pn.27 However, these 27:
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Expect to see this as an exer-
cise!are not all of the subspaces of Pn! The subspace J from the exploration above

is not Pk for any integer k, and you’ll see several other examples of subspaces
of Pn in the exercises.

We should really see an example of something that is not a subspace, too.

Example 1.4.3 Let’s consider the set K =

{[
a

a+ 2

]
: a ∈ R

}
. Since

for any a ∈ R we know a+ 2 ∈ R as well, this is a subset of R2. However,
it is not a subspace.

▶ First of all, this set does not contain the zero vector of R2. To see
this, suppose for some a ∈ R2[

a

a+ 2

]
=

[
0

0

]
.

Then a = 0 and a + 2 = 0. Both of these can’t be true. At this
point, we can definitively state it is not a subspace, but let’s see
what happens with the other axioms.

28:
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We only need to fail one
axiom?
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Yep! Once you fail one axiom,
you can’t satisfy all axioms of a
definition.
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Neat.

28

▶ We can check that closure under vector addition also fails. To
show this, it is enough to check that it fails for specific vectors
rather than general ones. Let’s consider[

0

2

]
and

[
1

3

]
.

These are in K since one corresponds to a = 0 and the other to
a = 1, but the sum[

0

2

]
+

[
1

3

]
=

[
1

5

]
is not in K since we cannot have a = 1 and a + 2 = 5 both be
true.

▶ Lastly, we can show that K is not closed under scalar multiplica-
tion. Again, to show a property fails, it is enough to give a specific
case where it fails. We can choose[

0

2

]
∈ K



SUBSPACES OF RN 59

and the scalar 5 ∈ R. Then

5

[
0

2

]
=

[
0

10

]
is not in K since a = 0 and a+ 2 = 10 cannot both be true.

Exploration 28 The following subset L is not a subspace of P1. Which of the
three axioms fail?29 29:
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Remember that we only need
to show one axiom fails to show L is not
a subspace!

L = {mx+ b : m, b > 0}

Now that we’ve seen some examples, let’s explore in detail what happens in
Rn.

Subspaces of Rn

If you’ve been keeping up with the sidenotes, then we’ve already mentioned
the subspaces of R. We’ve claimed that the only subspaces of R are the “un-
interesting” ones, {⃗0} and R itself. However, we also saw in the exercises of
Section 1.1 that the interval (0,∞) is a vector space when addition is given by
a⊞b = ab and scalar multiplication is ka = ak for k ∈ R and a, b ∈ (0,∞).30 30:
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Unless you skipped that one
like I did.Why is this not a subspace of R? Well, the operations of addition and scalar

multiplication must be the exact same ones from the larger vector space in or-
der for a subset to be a subspace. Thus, Theorem 1.4.1 lets us say “A subspace
of a vector space V is a subset that is also a vector space” but only with the
caveat that the operations are the same as those for V .

Now let’s focus on subspaces of R3. This will give us some nice geometric
intuition to go along with the algebraic computations.

Example 1.4.4 First we’ll show that

H =


 3t

0

−5t

 : t ∈ R


is a subspace of R3. Note that the vectors here have three real components,
so H is a subset of R3. Next we need to verify the three axioms in Definition
1.4.1. The first requires that 0⃗ ∈ H . Indeed, when t = 0, we see that 0⃗ ∈ H .
That one was easy (this time). It only remains to show H is closed under
vector addition and scalar multiplication. As we did in Section 1.1, we need
to have general elements of the set H to satisfy Definition 1.4.1, which
needs to hold “for any” vectors in H . Let x, y ∈ R, so

x⃗ =

 3x

0

−5x

 , y⃗ =

 3y

0

−5y

 ∈ H
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are general elements. Let’s see what happens when we add them:

x⃗+ y⃗ =

 3x

0

−5x

+

 3y

0

−5y

 =

 3x+ 3y

0 + 0

−5x− 5y

 =

 3(x+ y)

0

−5(x+ y)

 .

This last vector is an element of H since x + y ∈ R. Thus, the sum of
any two vectors in H is still in H , so H is closed under vector addition. To
check closure under scalar multiplication, let a ∈ R. Then

ax⃗ = a

 3x

0

−5x

 =

 a(3x)

a(0)

a(−5x)

 =

 3(ax)

0

−5(ax)

 .

Since ax ∈ R, this last vector is also in H . Thus, H is closed under scalar
multiplication. It follows that H is a subspace of R3.
Before moving on, let’s think a bit about the geometry of this subspace in
R3. Sketch this set of vectors in R3. Observe that H is actually a line
through the origin in the direction of the vector 3

0

−5

 .

What if we considered a line that does not go through the origin? Can that
be a subspace of R3? This would be a fun exploration, but let’s do this one
together.

Example 1.4.5 Here’s another subset of R3.

H =


 3t

1

−5t

 : t ∈ R


The only difference between this set and the set in Example 1.4.4 is that
these vectors have 1 as their second component, rather than 0. Geometri-
cally, this is equivalent to a line in R3 that does not go through the origin,
like we were just speculating about. It turns out this is not a subspace since
it does not contain the zero vector from R3.

Example 1.4.6 At the risk of developing a theme, here’s another subset of
R3.

H =


 0

y

z

 : y, z ∈ R


Spoiler: this one’s a subspace. Checking is very similar to Example 1.4.4,
but you should check it anyway. Let’s consider{[

y

z

]
: y, z ∈ R

}
= R2.

Well, this seems like it’s the same as H , in which case we’d have R2 as
a subspace of R3 (just like P2 is a subspace of P3). Seems okay, right?
. . . Right?
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No! Absolutely not! While they have many things in common and “look
alike,” the definition of a subspace H of the vector space V requires first for
H to be a subset of V . Vectors in R2 are not vectors in R3; they are two
different mathematical objects. While H resembles R2 in many ways, R2

is not a subspace of R3 because it’s not even a subset of R3. You may find
this annoying. Indeed, the vectors 0

y

z

 and
[

y

z

]
carry the same information. They are alike in many ways, but they are,
strictly speaking, different mathematical objects. While this may seem ob-
noxious, this degree of rigor in definitions is necessary for consistently func-
tional (and understandable) mathematics. Later we shall investigate what we
can gain by defining and understanding what it means for vectors or vector
spaces to “look alike.”

Exploration 29 True or false? R is a subspace of R3.31 31:
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FALSE!!

What’s different about the definition of Pn that allows Pk to be a subspace of
Pn for k ≤ n?

We’ve now seen examples of several subspaces of R3 and some subsets that
are not subspaces in R3. What do subspaces of R3 look like geometrically?

▶ Well, we have {⃗0} as a subspace. This is just the point at the origin.

▶ From Examples 1.4.4 and 1.4.5 we saw a subspace that was a line
through the origin and that lines not traveling through the origin are
not subspaces. Really, we saw one example of this, but they all fail
for the exact same reason. Any line not through the origin does not
contain 0⃗.

▶ Then in Example 1.4.6, we saw that a plane could be a subspace. Are
all planes subspaces, though? Nope. Just like lines must go through
the origin, planes that are subspaces must also go through the origin
in order to contain the zero vector.

▶ Lastly, we know that R3 is a subspace of itself, and we all know what
R3 looks like, right?32 32:
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If you said a giant purple go-
rilla, you are incorrect.

We’ve discussed subspaces of Rn for n = 1 and n = 3. Note that we skipped
over R2. That’s because it will make a glorious exercise for you! We also
have not addressed subspaces for n > 3. That’s because once we leave the
comfortable 3-dimensional world we live in, we lose our geometric tools and
must rely upon just algebra. With that in mind, we will now turn to more
algebraic tools.
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Spans as Subspaces

Suppose you were given a set and you suspected it was a vector space. Initially,
there were roughly ten axioms you had to verify before you could declare your
set a vector space. At the beginning of this section, we cut that list down to
three things if your set was already contained in a vector space. What’s better
than checking three things? One. Checking just one thing is better.33 33:
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Wait. What’s the catch? There
has to be a catch. This feels like a trap!

Theorem 1.4.2 Let v⃗1, . . . , v⃗n be vectors in a vector space V . Then
Span {v⃗1, . . . , v⃗n} is a subspace of V . Note that Span {v⃗1, . . . , v⃗n} can be
referred to as the subspace spanned by v⃗1, . . . , v⃗n.

PROOF. Recall that

Span {v⃗1, . . . , v⃗n} = {a1v⃗1 + · · ·+ anv⃗n : ai ∈ R for i = 1, . . . , n}.

Since the ai’s can be any real number, we observe that when a1 = · · · = an =

0, we have

a1v⃗1 + · · ·+ anv⃗n = 0v⃗1 + · · ·+ 0v⃗n = 0⃗,

so Span {v⃗1, . . . , v⃗n} contains the zero vector. Now we need general vectors
in Span {v⃗1, . . . , v⃗n}:

x⃗ = a1v⃗1 + · · ·+ anv⃗n

y⃗ = b1v⃗1 + · · ·+ bnv⃗n.

To see closure under vector addition, we add x⃗ and y⃗:

x⃗+ y⃗ = (a1v⃗1 + · · ·+ anv⃗n) + (b1v⃗1 + · · ·+ bnv⃗n)

= (a1v⃗1 + b1v⃗1) + · · ·+ (anv⃗n + bnv⃗n)

= (a1 + b1)v⃗1 + · · ·+ (an + bn)v⃗n,

noting that the only reason we can pull off all that algebraic manipulation
(associativity and commutivity of vector addition and distributivity for scalar
multiplication) is because these vectors are all part of a vector space V already.
The last line of this equation is a vector in Span {v⃗1, . . . , v⃗n} since ai+bi ∈ R,
so Span {v⃗1, . . . , v⃗n} is closed under vector addition. To see closure under
scalar multiplication, we multiply x⃗ by c ∈ R:

cx⃗ = c(a1v⃗1 + · · ·+ anv⃗n)

= ca1v⃗1 + · · ·+ canv⃗n

= (ca1)v⃗1 + · · ·+ (can)v⃗n.

Again, the last line of this equation is a vector in Span {v⃗1, . . . , v⃗n} since
cai ∈ R, so Span {v⃗1, . . . , v⃗n} is closed under scalar multiplication. Behold!
Span {v⃗1, . . . , v⃗n} is a subspace of V ! □

How does one use this theorem? If you have a set of vectors in a vector space
V and want to show they form a subspace, all you have to do is show your
set is the span of some set of vectors. Just show that, and you’re done. Pretty
great, right?
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Example 1.4.7 Let

H =




a− 2b

b− a

a

b

 : a, b ∈ R

 ⊂ R4.

You could show this is a subspace using the definition of a subspace, or you
could show it’s a subspace by showing it’s the span of some set of vectors.
Let’s do the latter. Note that for any a, b ∈ R,

a− 2b

b− a

a

b

 =


a

−a
a

0

+


−2b

b

0

b

 = a


1

−1
1

0

+ b


−2
1

0

1

 .

Neat, eh? Here we’ve undone vector addition and scalar multiplication, but
look what we can do now:

H =




a− 2b

b− a

a

b

 : a, b ∈ R


=

a


1

−1
1

0

+ b


−2
1

0

1

 : a, b ∈ R


= Span




1

−1
1

0

 ,


−2
1

0

1


 .

This tells us H is the span of two vectors in R4. Now it follows from
Theorem 1.4.2 that H is a subspace of R4.

Exploration 30 Let

J =


 a+ b

a+ b+ c

a+ b

 : a, b, c ∈ R

 ⊂ R3.

Find a set of vectors {v⃗1, . . . , v⃗k} such that J = Span {v⃗1, . . . , v⃗k}.

We now have a theorem that says that the span of a set of vectors in a vector
space V must be a subspace of V , which is neat. What about the other way
around? Is every subspace of V a span of some set of vectors in V ? Actually,
this turns out to be true! It’s very exciting. Unfortunately, the proof of this
fact requires a bit more than the scope of this text, so this is really all we’ll say
about it.
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Intersections and Sums of Subspaces

Perhaps you have two subspaces of a particular vector space V that you are
interested in. A natural question would perhaps be “How are they related to
one another?” or maybe instead “How could you combine these subspaces?”
The first of these two questions leads us to the idea of the intersection of two
subspaces. First, let’s be sure we know what an intersection is.

Definition 1.4.2 The intersection of two sets A and B is all of the elements
that are in both A and B. We denote this intersection as A ∩B.

For example, if A = {1, 2, 3, 4} and B = {2, 4, 6, 8}, then the intersection of
A and B is {2, 4}.

Now, what is the intersection of two subspaces of a vector space V ? Why, a
subspace of V !

Theorem 1.4.3 Let V be a vector space over R with subspaces U and W .
Then the intersection U ∩W is also a subspace of V .

Exploration 31 Let’s go through this proof together.

▶ We need to argue that 0⃗ is in U ∩W . Thus, we need 0⃗ to be in both
U and W . Why is this true?

▶ Now, let x⃗ and y⃗ be in U ∩W . Why is x⃗+ y⃗ in U? Why is it in W ?

Since x⃗ + y⃗ is in both U and W , it must be in U ∩ W . Thus the
intersection is closed under addition.

▶ Lastly, suppose k ∈ R and x⃗ is again in U ∩W . Follow the logic
above to show kx⃗ must be in U ∩W .

Exploration 32 Let’s look at an explicit example of this. The following are all
subspaces of R3.

U = Span


 1

1

0

 ,

 0

0

1

 V = Span


 0

1

0


W = Span


 1

0

1

 ,

 0

1

0


Let’s find the intersections of these subspaces.
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▶ U ∩ V : A vector that is in both U and V will satisfy the following
equation

(1.12) a

 1

1

0

+ b

 0

0

1

 = c

 0

1

0


for some real numbers a, b, and c. The top row (first component)
gives us the equation a = 0. Then, the middle row (second compo-
nent) gives us the equation a = c. The last row (third component)
gives us b = 0. Thus, a = b = c = 0. So the only vector satisfying
Equation 1.12 is the zero vector and U ∩ V = {⃗0}.

▶ U ∩W : A vector that is in both U and W will satisfy the following
equation

(1.13) a

 1

1

0

+ b

 0

0

1

 = c

 1

0

1

+ d

 0

1

0


for some real numbers a, b, c and d. Find the equations from each
row and show that a = b = c = d.

Now, what does that tell us about the intersection? Well, any vector
in the intersection must be of the form

a

 1

1

0

+ a

 0

0

1

 or equivalently a

 1

1

1

 .

Thus, U ∩W = Span


 1

1

1

.

▶ V ∩W : Follow the methods used above to compute this intersection.

The second question mentioned earlier dealt with combining subspaces. The
correct notion for this is to take the sum of the subspaces.
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Definition 1.4.3 Let U and W be subspaces of a vector space V . The sum
of these subspaces U +W is defined as

{u⃗+ w⃗ : u⃗ ∈ U, w⃗ ∈W}.

Additionally, if U and W have the property that U ∩W = {⃗0}, then we call
this a direct sum and denote it U ⊕W .

Theorem 1.4.4 Let U and W be subspaces of a vector space V . Then the
sum U +W is a subspace of V .

The proof of this follows a similar format as the previous one that said U ∩ V

is a subspace, so we’ll just leave that as an exercise.34 34:
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At this point, you should have
a good idea of what the homework for
this section will look like!Example 1.4.8 Let’s determine the sums of some of the vector spaces we

considered in Exploration 31. Let’s recall the definitions of the subspaces
of R3 to start.

U = Span


 1

1

0

 ,

 0

0

1

 V = Span


 0

1

0


W = Span


 1

0

1

 ,

 0

1

0


Whenever our subspaces are given to us as the span of a set of vectors,
finding the sum is fairly straightforward. We just combine the sets defining
each of the two subspaces to get a new set, then take the span. For example,

U +W = Span


 1

1

0

 ,

 0

0

1

 ,

 1

0

1

 ,

 0

1

0


= Span


 0

0

1

 ,

 1

0

1

 ,

 0

1

0

 = R3

Note here that the initial list of vectors we obtained was not linearly indepen-
dent, despite the fact the original two lists were when considered separately.
This will always be the case when your subspaces have an intersection other
than {⃗0}.
Let’s consider now the case of U + V . Since we know from Exploration
31 that U ∩ V = {⃗0}, what we’ll have instead is the direct sum U ⊕ V . In
particular,

U ⊕ V = Span


 1

1

0

 ,

 0

0

1

 ,

 0

1

0

 = R3.

Note that here the new list of vectors was linearly independent.

Direct sums give us a way to decompose a vector space neatly and will be a
topic that comes up again in the following chapters.
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Section Highlights

▶ A subspace (Definition 1.4.1) is a subset of a vector space that is
itself a vector space.

▶ For a vector space V , V and the set consisting of just the zero vector
are both subspaces.

▶ The span of a set of vectors is always a subspace. See Theorem 1.4.2.

▶ The sum of two subspaces is a subspace (Definition 1.4.3 and Theo-
rem 1.4.4), and the intersection of two subspaces is a subspace (The-
orem 1.4.3).
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Exercises for Section 1.4

1.4.1.The following subsets all fail to be closed under vector addition. Give an example that illustrates this failure.

(a) {a+ bx : a, b ∈ R, a ̸= 0} ⊂ P2

(b)
{[

1

a

]
: a ∈ R

}
⊂ R2

(c)


 ab

b

a

 : a, b ∈ R

 ⊂ R3

(d)
{[

a+ 3

a

]
: a ∈ R

}
⊂ R2

1.4.2.The following subsets all fail to be closed under scalar multiplication. Give an example that illustrates this
failure.

(a) {a+ ax : a ∈ R, a ≥ 0} ⊂ P2

(b)
{[

1

a

]
: a ∈ R

}
⊂ R2

(c)


 ab

b

a

 : a, b ∈ R

 ⊂ R3

(d)
{[

a+ 3

a

]
: a ∈ R

}
⊂ R2

1.4.3.Show that the following subsets are subspaces of P3. Then, write each as the span of some set of vectors.

(a) {a+ bx3 : a, b ∈ R}

(b) {4(a+ c) + bx+ cx2 : a, b, c ∈ R}

1.4.4.Show that {4 + ax+ bx2 : a, b ∈ R} is not a subspace of P3. Identify which of the three properties fail.

1.4.5.Show that

H =


 t

0

2t

 : t ∈ R


is a subspace of R3, and write it as the span of some set of vectors.

1.4.6.Show that

H =


 0

x

y

 : x, y ∈ R


is a subspace of R3, and write it as the span of some set of vectors.
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1.4.7.Show that

H =


 1

0

2t

 : t ∈ R


is not a subspace of R3. Identify which of the three properties fail.

1.4.8.Show that

H =


 t

0

2t

 : t ∈ R, t > 0


is not a subspace of R3. Identify which of the three properties fail.

1.4.9.Show that

H =


 t

0

2t

 : t ∈ R, t ≥ 0


is not a subspace of R3. Identify which of the three properties fail.

1.4.10.Suppose V is a vector space. Show that {⃗0} is a subspace of V .

1.4.11.Suppose V is a vector space. Show that V is a subspace of V .

1.4.12.Show that the only subspaces of R are R and {⃗0}. To do this, suppose there is some other subspace H of R.
If H ̸= {⃗0}, then there must be some nonzero vector v ∈ H . Conclude that H = R.

1.4.13.Suppose that H is a subset of a vector space V and you’ve shown that the second and third axioms from the
definition of subspace hold (that is, that H is vector addition under and scalar multiplication). Did you know
that if H is nonempty that this implies that the first axiom holds (that is, that H contains the zero vector) as
well? It’s true! Now prove it.

1.4.14.We will now investigate subspace in R2.

(a) Show {⃗0} is a subspace of R2.

(b) Show R2 is a subspace of R2.

(c) Show the set L(a, b) below is a subspace of R2 for any real numbers a and b.

L(a, b) =

{[
ka

kb

]
: k ∈ R

}
.

1.4.15.Show that Pk = {a0 + a1x + a2x
2 + · · · + akx

k : ai ∈ R for 0 ≤ i ≤ k} is a subspace of Pn =

{a0 + a1x+ a2x
2 + · · ·+ anx

n : ai ∈ R for 0 ≤ i ≤ n} for any 0 ≤ k ≤ n. Hint: This should look similar
to Example 1.4.2.

1.4.16.The following are all subspaces of R3.

U = Span


 0

1

0

 ,

 1

0

1

 V = Span


 0

1

0

 W = Span


 2

0

1

 ,

 1

1

0

 .

(a) Is u⃗ =

 1

1

1

 ∈ U ∩ V ?
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(b) Is v⃗ =

 1

1

0

 ∈ U ∩W ?

(c) Find U ∩ V .

(d) Find U ∩W .

(e) Find V ∩W .

(f) Find U +W . Is this a direct sum?

(g) Find V +W . Is this a direct sum?

1.4.17.The following are all subspaces of R3.

U = Span


 −11

0

 ,

 0

1

1

 V = Span


 0

1

0

 ,

 1

1

0

 W = Span


 −12

1

 ,

 1

1

0

 .

(a) Is u⃗ =

 1

1

1

 ∈ U ∩ V ?

(b) Is v⃗ =

 1

0

0

 ∈ U ∩W ?

(c) Is v⃗ =

 1

1

0

 ∈ V ∩W ?

(d) Find U ∩ V .

(e) Find U ∩W .

(f) Find V ∩W .

(g) Find U +W . Is this a direct sum?

(h) Find V +W . Is this a direct sum?

1.4.18.Prove Theorem 1.4.4, which says the sum of two subspaces is a subspace.

1.4.19.Along with the concept of intersection, we often discuss the union of two sets. Let A and B be sets. The
union of A and B, denoted A∪B, is the set of all elements in either A or B. For example, if A = {1, 2, 3, 4}
and B = {2, 4, 6, 8}, then the union of A and B is {1, 2, 3, 4, 6, 8}. Let U and W be subspaces of a vector
space V . Show that U ∪W is not a subspace of V in general. Under which conditions will it be a subspace?
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1.5 A Menagerie of Vector Spaces

We’ve had quite a few different examples of real vectors spaces already. Here’s
a list with links to where you can go back and read about them again:

▶ Rn: Equation 1.2, Section 1.1

▶ Pn: Equation 1.7, Section 1.1

▶ arrows: beginning of Section 1.2

▶ C: Exercise 1.1.3, Section 1.1

▶ (0,∞): Exercise 1.1.12, Section 1.1

▶ sums and intersections of subspaces: Theorem 1.4.4, Section 1.4

But wait! There’s more!35 35:
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I’m not paying for anything.

A Peek Into the Future

There are other examples of vector spaces that will appear for us naturally
later. However, we can tell you a little about them now.36 36:
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Spoilers!

Example 1.5.1 A rectangular array of numbers with m rows and n columns
is called an m×n matrix, and we call the set of all such matricesMm×n(R).
When m = 2 and n = 2, we more specifically have

M2×2(R) =
{[

a b

c d

]
: a, b, c, d ∈ R

}
.

If we define vector addition componentwise,[
a b

c d

]
+

[
e f

g h

]
=

[
a+ d b+ e

c+ g d+ h

]
,

and for scalars k, we define scalar multiplication as

k

[
a b

c d

]
=

[
ka kb

kc kd

]
.

You might have noticed that this set and its operations look a lot like R4,
just with the vector entries arranged in a different shape. If that’s the case, it
should not surprise you thatM2×2(R) is a vector space. Should you require
a review of the ten axioms, though, you should check them for practice.

Exploration 33 Let

M0 = =

{[
0 b

c d

]
: b, c, d ∈ R

}
and

M1 = =

{[
1 b

c d

]
: b, c, d ∈ R

}
.

Show that M0 is a subspace ofM2×2(R) but M1 is not.
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Example 1.5.2 Consider the general form of a linear equation in n variables:

a1x1 + · · ·+ anxn = b.

Moving the constant term to the left side, we have

a1x1 + · · ·+ anxn − b = 0,

and this looks very much like the general form of a vector in Pn. Leveraging
what we know about Pn, we can make a vector space of linear equations.
Let

V = {a1x1 + · · ·+ anxn = an+1 : ai ∈ R for i = 1, . . . , n+ 1},

and define vector addition by combining like terms and scalar multiplication
by multiplication on both sides of the equation. With these operations, this
set is a vector space.

Example 1.5.3 Suppose V and W are both vector spaces. Just like how we
took Cartesian products of sets in Chapter 0, we can do the same with vector
spaces. Consider the set

V ×W = {(v⃗, w⃗) : v⃗ ∈ V and w⃗ ∈W}.

If we use operations from V in the first component and operations from W

in the second, then the set V ×W is a vector space. Check!

Exploration 34 Do these computations in R2 × P2.

▶

([
1

2

]
, 1 + x+ x2

)
+

([
1

0

]
, 3 + x2

)
=

▶ 5

([
1

2

]
, 1 + x+ x2

)
=

Function Spaces

While we’re on the topic of additional examples of vector spaces, here’s a nice
class of them that you may find interesting.37 37:
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Ooh! Look at all the fancy cal-
ligraphy!
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C’mon, Ricky. Don’t get taken in
by substance-free flash; seriously–Wait.
That “C” is very cool.

Let I ⊆ R be any interval, and define

C(I) = {f : I → R : f is continuous}
D(I) = {f : I → R : f is differentiable}
R(I) = {f : I → R : f is integrable}

Again, we’re going to think of f⃗ ∈ D(I) as a vector, knowing in our hearts
that this vector is a real-valued function defined on I . For f⃗ , g⃗ ∈ C(I) (or
D(I) orR(I)38 ) and a ∈ R, define 38:
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Hang on. Why “R” for “inte-
grable?” Why not “I?”
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Do you want to write “I(I)?” The
“R” is probably for Riemann.

f⃗ + g⃗ = ⃗f + g : I → R defined by ⃗(f + g)(x) = f(x) + g(x) and

af⃗ = a⃗f : I → R defined by a⃗f(x) = af(x).
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Using these typical operations, function addition and scalar multiplication of
functions, C(I), D(I), and R(I) are all vector spaces. Of course, you should
really check this. Let’s talk about what would go into doing that. There are
some properties of continuous, differentiable, and integrable39 functions that 39:
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I didn’t come here for calcu-
lus.
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Settle down. No one’s asking you
to integrate anything.

should be easily located in just about any calculus text that tell us these sets are
closed under the operations of vector addition and scalar multiplication. Then
the remaining properties actually hold more broadly for the set of functions
from I to R.

Example 1.5.4 Note that f⃗ = sinx and g⃗ = cosx are both vectors in
C([0, 1]) because both sinx and cosx are continuous functions of x on the
interval [0, 1]. Note that sinπ/4 = cosπ/4. Nevertheless, f⃗ ̸= g⃗; for these
vectors to be equal, they would have to be the same for all values of x in
[0, 1].
Moreover, f⃗ and g⃗ are linearly independent. If f⃗ and g⃗ were linearly de-
pendent, we would have g⃗ = af⃗ for some nonzero scalar a, and this would
have to be true for all x. However, note that for x = 0 ∈ [0, 1], we have

1 = cos 0 = a sin 0 = 0,

so there is no a such that g⃗ = af⃗ for all x ∈ [0, 1]. Thus, f⃗ and g⃗ are linearly
independent.

Exploration 35 Let f⃗ = ex and g⃗ = x2. We know that Span
{
f⃗ , g⃗
}

is a

subspace of D(R). Show that Span
{
f⃗ , g⃗
}
̸= D(R).

Example 1.5.5 Here’s a differential equation:

(1.14) y′′′ + 3y′′ + 2y′ = 0.

We can check that y1 = e−x, y2 = e−2x, and y3 = 87 are all solutions:

y′′′1 + 3y′′1 + 2y′1 = −e−x + 3e−x − 2e−x = 0

y′′′2 + 3y′′2 + 2y′2 = −8e−x + 12e−x − 4e−x = 0

y′′′3 + 3y′′3 + 2y′3 = −0 + 3(0)− 2(0) = 0

Each function yi for i = 1, 2, 3 makes Equation 1.14 true when substituted
in for y, so all three are solutions for the differential equation.

This all may seem like a wild tangent, but note that y1, y2, and y3 from Exam-
ple 1.5.5 are all vectors in D(R). Obviously, Span {y1, y2, y3} is a subspace
of D(R).40 40:
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Wait, why is this obvious?

Exploration 36 Show that any vector in Span {y1, y2, y3}, that is, any linear
combination of y1, y2, and y3, is a solution to Equation 1.14.
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Thus, Span {y1, y2, y3} is an entire subspace of solutions for the given dif-
ferential equation. This is an example of the Superposition Principle, and it
actually holds for a large class of differential equations. We should definitely
think about this more, but let’s do it later.41 41:
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Later, like in a different book?
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Exercises for Section 1.5

1.5.1.Let

H = =

{[
a b

c d

]
: a, b, c, d ∈ R and a+ d = 0

}
.

Show H is a subspace ofM2×2(R).

1.5.2.Determine whether H =

{[
x x+ y

x− y y

]
: x, y ∈ R

}
is a subspace ofM2×2.

1.5.3.Consider the vector space

V = {a1x1 + a2x2 = a3 : ai ∈ R for i = 1, 2, 3}.

Note that x1 + x2 = 2 is a vector in V and that x1 = x2 = 1 is a solution to this particular equation.
Determine whether the set of vectors in V for which x1 = x2 = 1 is a solution is a subspace of V . Justify
your determination.

1.5.4.Let
S = {(s1, s2, . . . ) : si ∈ R for i = 1, 2, . . . }

be the set of infinite real-valued sequences. Using

(s1, s2, . . . ) + (r1, r2, . . . ) = (s1 + r2, s2 + r2, . . . ) and

k(s1, s2, . . . ) = (ks1, ks2, . . . ),

determine whether S is a vector space.

1.5.5.Show that R2 × P2 is a vector space.

1.5.6.Let
S0 = {(s1, s2, . . . ) : si ∈ {0, 1} for i = 1, 2, . . . }

be the set of infinite binary sequences. Here’s how addition will work on {0, 1}:

1 + 0 = 1,

0 + 1 = 1,

0 + 0 = 0, and

1 + 1 = 0.

For (s1, s2, . . . ), (r1, r2, . . . ) ∈ S0, and k ∈ {0, 1}, define

(s1, s2, . . . ) + (r1, r2, . . . ) = (s1 + r2, s2 + r2, . . . ) and

k(s1, s2, . . . ) = (ks1, ks2, . . . ).

Determine whether S0 is a vector space. Note that k is only allowed to be 0 or 1; we’re not looking for a real
vector space here because we’re not using real scalars.

1.5.7.For two functions f : R → R and g : R → R, both differentiable, the Wronskian of f and g is defined as
W (x) = f(x)g′(x)− g(x)f ′(x). Show that if W (x) ̸= 0 for some x, then f and g are linearly independent.




