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Active Calculus: Our Goals

Several fundamental ideas in calculus are more than 2000 years old. As a formal subdisci-
pline of mathematics, calculus was first introduced and developed in the late 1600s, with
key independent contributions from Sir Isaac Newton and Gottfried Wilhelm Leibniz. The
subject has been understood rigorously since the work of Augustin Louis Cauchy and Karl
Weierstrass in the mid 1800s when the field of modern analysis was developed. As a body
of knowledge, calculus has been completely understood for at least 150 years. The disci-
pline is one of our great human intellectual achievements: among many spectacular ideas,
calculus models how objects fall under the forces of gravity and wind resistance, explains
how to compute areas and volumes of interesting shapes, enables us to work rigorously
with infinitely small and infinitely large quantities, and connects the varying rates at which
quantities change to the total change in the quantities themselves.

While each author of a calculus textbook certainly offers their own creative perspective on
the subject, it is hardly the case that many of the ideas they present are new. Indeed, the
mathematics community broadly agrees on what the main ideas of calculus are, as well as
their justification and their importance. In the 21st century and the age of the internet, no one
should be required to purchase a calculus text to read, to use for a class, or to find a coherent
collection of problems to solve. Calculus belongs to humankind, not any individual author
or publishing company. Thus, a primary purpose of this work is to present a calculus text
that is free. See https://activecalculus.org for links to both the .html and .pdf versions of the
text. In addition, instructors who are looking for a calculus text should have the opportunity
to download the source files and make modifications that they see fit; thus this text is open-
source. See GitHub for the source. Since August 2013, Active Calculus - Single Variable has
been endorsed by the American Institute of Mathematics and its Open Textbook Initiative.

In Active Calculus - Single Variable, we actively engage students in learning the subject through
an activity-driven approach in which the vast majority of the examples are generated by
students. Where many texts present a general theory followed by substantial collections of
worked examples, we instead pose problems or situations, consider possibilities, and then
ask students to investigate and explore. Following key activities or examples, the presen-
tation normally includes some overall perspective and a brief synopsis of general trends or
properties, followed by formal statements of rules or theorems. While we often offer plau-
sibility arguments for such results, rarely do we include formal proofs. It is not the intent of
this text for the instructor or author to demonstrate to students that the ideas of calculus are
coherent and true, but rather for students to encounter these ideas in a supportive, leading
manner that enables them to begin to understand calculus for themselves. This approach is
consistent with the scholarly consensus that calls for students to be interactively engaged in
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class.

Moreover, this approach is consistent with the following goals:

xii

To have students engage in an active, inquiry-driven approach, where learners con-
struct solutions and approaches to ideas, with appropriate support through questions
posed, hints, and guidance from the instructor and text.

To build in students intuition for why the main ideas in calculus are natural and true.
Often we do this through consideration of the instantaneous position and velocity of
a moving object.

To challenge students to acquire deep, personal understanding of calculus through
reading the text and completing preview activities on their own, working on activities
in small groups in class, and doing substantial exercises outside of class time.

To strengthen students” written and oral communicating skills by having them write
about and explain aloud the key ideas of calculus.



Features of the Text

Instructors and students alike will find several consistent features in the presentation, in-
cluding:

Motivating Questions At the start of each section, we list 2-3 motivating questions that pro-
vide motivation for why the following material is of interest to us. One overall goal of
each section is to answer each of the motivating questions.

Preview Activities Each section of the text begins with a short introduction, followed by a
preview activity. This brief reading and the preview activity are designed to foreshadow
the upcoming ideas in the remainder of the section; both the reading and preview
activity are intended to be accessible to students in advance of class, and to be completed
by students before the day on which a particular section is to be considered.

Activities A typical section in the text has at least three activities. These are designed to
engage students in an inquiry-based style that encourages them to construct solutions
to key examples on their own, working individually or in small groups.

Exercises There are dozens of calculus texts with (collectively) tens of thousands of exer-
cises. Rather than repeat standard and routine exercises in this text, we recommend
the use of WeBWorK with its access to the Open Problem Library and around 20,000
calculus problems. In this text, each section includes a small number of anonymous
WeBWorK exercises, as well as 3—4 challenging problems per section. The WeBWorK
exercises are best completed in the .html version of the text, as this provides students
with immediate feedback without penalty. Almost every non- WeBWorK exercise has
multiple parts, requires the student to connect several key ideas, and expects that the
student will do at least a modest amount of writing to answer the questions and explain
their findings. For instructors interested in a more conventional source of exercises,
consider the freely available APEX Calculus text by Greg Hartmann et al., available
from www.apexcalculus.com.

Graphics We strive to demonstrate key fundamental ideas visually, and to encourage stu-
dents to do the same. Throughout the text, we use full-color! graphics to exemplify
and magnify key ideas, and to use this graphical perspective alongside both numerical
and algebraic representations of calculus.

To keep cost low, the graphics in the print-on-demand version are in black and white. When the text itself refers
to color in images, one needs to view the .html or .pdf electronically.
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Links to interactive graphics Many of the ideas of calculus are best understood dynami-
cally; java applets offer an often ideal format for investigations and demonstrations.
Relying primarily on the work of David Austin of Grand Valley State University and
Marc Renault of Shippensburg University, each of whom has developed a large li-
brary of applets for calculus, we frequently point the reader (through active links in
the electronic versions of the text) to applets that are relevant for key ideas under con-
sideration.

Summary of Key Ideas Each section concludes with a summary of the key ideas encoun-
tered in the preceding section; this summary normally reflects responses to the moti-
vating questions that began the section.
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Students! Read this!

This book is different.

The text is available in three different formats: HTML, PDF, and print, each of which is
available via links on the landing page at https://activecalculus.org/single/. The first two
formats are free. If you are going to use the book electronically, the best mode is the HTML.
The HTML version looks great in any browser, including on a smartphone, and the links
are much easier to navigate in HTML than in PDF. Some particular direct suggestions about
using the HTML follow among the next few paragraphs; alternatively, you can watch this
short video from the author. It is also wise to download and save the PDF, since you can
use the PDF offline, while the HTML version requires an internet connection. A print copy
costs about $21 via Amazon.

This book is intended to be read sequentially and engaged with, much more than to be used
as a lookup reference. For example, each section begins with a short introduction and a
Preview Activity; you should read the short introduction and complete the Preview Activity
prior to class. Your instructor may require you to do this. Most Preview Activities can be
completed in 15-20 minutes and are intended to be accessible based on the understanding
you have from preceding sections. There are not answers provided to Preview Activities, as
these are designed simply to get you thinking about ideas that will be helpful in work on
upcoming new material.

As you use the book, think of it as a workbook, not a worked-book. There is a great deal
of scholarship that shows people learn better when they interactively engage and struggle
with ideas themselves, rather than passively watch others. Thus, instead of reading worked
examples or watching an instructor complete examples, you will engage with Activities that
prompt you to grapple with concepts and develop deep understanding. You should expect
to spend time in class working with peers on Activities and getting feedback from them
and from your instructor. You can purchase a separate Activities Workbook from Amazon
(Chapters 1-4, Chapters 5-8) in which to record your work on the activities, or you can ask
your instructor for a copy of the PDF file that has only the activities along with room to
record your work. Your goal should be to do all of the activities in the relevant sections of
the text and keep a careful record of your work. You can find answers to the activities in the
back matter.

Each section concludes with a Summary. Reading the Summary after you have read the
section and worked the Activities is a good way to find a short list of key ideas that are most
essential to take from the section. A good study habit is to write similar summaries in your
own words.
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At the end of each section, you'll find two types of Exercises. First, there are several anony-
mous WeBWorK exercises. These are online, interactive exercises that allow you to submit
answers for immediate feedback with unlimited attempts without penalty; to submit an-
swers, you have to be using the HTML version of the text (see this short video on the HTML
version that includes a WeBWorK demonstration). You should use these exercises as a way
to test your understanding of basic ideas in the preceding section. If your institution uses
WeBWorK, you may also need to log in to a server as directed by your instructor to complete
assigned WeBWorK sets as part of your course grade. The WeBWorK exercises included
in this text are ungraded and not connected to any individual account. Following the WeB-
WorK exercises there are 3-4 additional challenging exercises that are designed to encourage
you to connect ideas, investigate new situations, and write about your understanding. There
are answers to most of the non-WeBWorK exercises in the back matter.

You can find additional support for your work in learning calculus from the GVSU Math 201
YouTube Channel and GVSU Math 202 YouTube Channel where there are several short video
tutorials for each section of the text, numbered in alignment with the textbook sections.
Math 201 corresponds to Chapters 1-4 and Math 202 to Chapters 5-8; there are about 90
videos for each, totally more than 180.

The best way to be successful in mathematics generally and calculus specifically is to strive
to make sense of the main ideas. We make sense of ideas by asking questions, interacting
with others, attempting to solve problems, making mistakes, revising attempts, and writing
and speaking about our understanding. This text has been designed to help you make sense
of calculus; we wish you the very best as you undertake the large and challenging task of
doing so.
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Instructors! Read this!

This book is different. Before you read further, first read “Students! Read this!”.

Chapters 1-4 are designed to correspond to what is often called differential calculus. Chap-
ters 5-8 correspond roughtly to what is often called integral calculus, including chapters on
differential equations and infinite series.

Among the three formats (HTML, PDF, print), the HTML is optimal for display in class if
you have a suitable projector. The HTML is also best for navigation, as links to internal and
external references are much more obvious. We recommend saving a downloaded version
of the PDF format as a backup in the event you don’t have internet access. It’s a good idea
for each student to have a printed version of the Activities Workbook, which is available on
Amazon (Chapters 1-4, Chapters 5-8) or as a PDF document by direct request to the author
(boelkinm at gvsu dot edu); many instructors use the PDF to have coursepacks printed for
students to purchase from their local bookstore.

The text is written so that, on average, one section corresponds to two hours of class meet-
ing time. A typical instructional sequence when starting a new section might look like the
following;:

e Students complete a Preview Activity in advance of class. Class begins with a short
debrief among peers followed by all class discussion. (5-10 minutes)

e Brief lecture and discussion to build on the preview activity and set the stage for the
next activity. (5-10 minutes)

¢ Students engage with peers to work on and discuss the first activity in the section.
(15-20 minutes)

 Brief discussion and possibly lecture to reach closure on the preceding activity, fol-
lowed by transition to new ideas. (Varies, but 5-15 minutes)

* Possibly begin next activity.
The next hour of class would be similar, but without the Preview Activity to complete prior
to class: the principal focus of class will be completing 2 activities. Then rinse and repeat.

We recommend that instructors use appropriate incentives to encourage students to com-
plete Preview Activities prior to class. Having these be part of completion-based assign-
ments that count 5% of the semester grade usually results in the vast majority of students
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completing the vast majority of the previews. If you'd like to see a sample syllabus for how
to organize a course and weight various assignments, you can request one via email to the
author.

Note that the WeBWorK exercises in the HTML version are anonymous and there’s not a
way to track students’ engagement with them. These are intended to be formative for stu-
dents and provide them with immediate feedback without penalty. If your institution is a
WeBWorK user, we have existing sets of .def files that correspond to the sections in the text;
these are available upon request to the author.

In the back matter of the text, you'll find answers to the Activities and to non-WeBWorK
Exercises. Instructors interested in solutions to these should contact the author directly.

You and your students can find additional resources in the GVSU Math 201 YouTube Chan-
nel and GVSU Math 202 YouTube Channel where there are short video tutorials for every
section of the text. Math 201 (GVSU’s Calculus I) corresponds to Chapters 1-4 and Math 202
(GVSU’s Calculus II) to Chapters 5-8.

The PreTeXt source code for the text can be found on GitHub. If you find errors in the text or
have other suggestions, you can file an issue on GitHub, use the Feedback link in the HTML
version (found at the bottom left in the main menu), or email the author directly. To engage
with instructors who use the text, we maintain both an email list and the Open Calculus
blog; you can request that your address be added to the email list by contacting the author.
Finally, if you're interested in a video presentation on using the text, you can see this online
video presentation to the MIT Electronic Seminar on Mathematics Education; at about the
17-minute mark, the portion begins where we demonstrate features of and how to use the
text.

Thank you for considering Active Calculus as a resource to help your students develop deep
understanding of the subject. I wish you the very best in your work and hope to hear from
you.
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CHAPTER l .

Understanding the Derivative

1.1 How do we measure velocity?

Motivating Questions

* How is the average velocity of a moving object connected to the values of its position
function?

* How do we interpret the average velocity of an object geometrically on the graph of
its position function?

¢ How is the notion of instantaneous velocity connected to average velocity?

Calculus can be viewed broadly as the study of change. A natural and important question
to ask about any changing quantity is “how fast is the quantity changing?”

We begin with a simple problem: a ball is tossed straight up in the air. How is the ball
moving? Questions like this one are central to our study of differential calculus.

Preview Activity 1.1.1. Suppose that the height s of a ball at time ¢ (in seconds) is
given in feet by the formula s(t) = 64 — 16(t — 1)2.

a. Construct a graph of y = s(t) on the time interval 0 < t < 3. Label at least six
distinct points on the graph, including the three points showing when the ball
was released, when the ball reaches its highest point, and when the ball lands.

b. Describe the behavior of the ball on the time interval 0 < t < 1 and on time
interval 1 < t < 3. What occurs at the instant f = 1?

c. Consider the expression

s(1) —s(0.5
Avios =" =g5

Compute the value of AV[g5). What does this value measure on the graph?
What does this value tell us about the motion of the ball? In particular, what are
the units on AV[y51,?

OO0



Chapter 1 Understanding the Derivative

1.1.1 Position and average velocity

Any moving object has a position that can be considered a function of time. When the motion
is along a straight line, the position is given by a single variable, which we denote by s(t).
For example, s(t) might give the mile marker of a car traveling on a straight highway at time
t in hours. Similarly, the function s described in Preview Activity 1.1.1 is a position function,
where position is measured vertically relative to the ground.

On any time interval, a moving object also has an average velocity. For example, to compute
a car’s average velocity we divide the number of miles traveled by the time elapsed, which
gives the velocity in miles per hour. Similarly, the value of AV 51} in Preview Activity 1.1.1
gave the average velocity of the ball on the time interval [0.5, 1], measured in feet per second.

In general, we make the following definition:

Average Velocity.

For an object moving in a straight line with position function s(t), the average velocity
of the object on the interval from t = a to t = b, denoted AV, ), is given by the formula

s(b) — s(a)

Note well: the units on AV}, ;) are “units of s per unit of ¢,” such as “miles per hour” or “feet
per second.”

Activity 1.1.2. The following questions concern the position function given by s(f) =
64 — 16(t — 1)?, considered in Preview Activity 1.1.1.

a. Compute the average velocity of the ball on each of the following time inter-
vals: [0.4,0.8], [0.7,0.8], [0.79,0.8], [0.799,0.8], [0.8,1.2], [0.8,0.9], [0.8,0.81],
[0.8,0.801]. Include units for each value.

b. On the graph provided in Figure 1.1.1, sketch the line that passes through the
points A = (0.4,5(0.4)) and B = (0.8,5(0.8)). What is the meaning of the slope
of this line? In light of this meaning, what is a geometric way to interpret each
of the values computed in the preceding question?

c. Use a graphing utility to plot the graph of s(t) = 64 — 16(t — 1)? on an interval
containing the value t = 0.8. Then, zoom in repeatedly on the point (0.8, s(0.8)).
What do you observe about how the graph appears as you view it more and
more closely?

d. What do you conjecture is the velocity of the ball at the instant ¢ = 0.8? Why?
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feet

sec

04 08 12

Figure 1.1.1: A partial plot of s(t) = 64 — 16(t — 1)2.

1.1.2 Instantaneous Velocity

Whether we are driving a car, riding a bike, or throwing a ball, we have an intuitive sense that
a moving object has a velocity at any given moment -- a number that measures how fast the
object is moving right now. For instance, a car’s speedometer tells the driver the car’s velocity
at any given instant. In fact, the velocity on a speedometer is really an average velocity that
is computed over a very small time interval. If we let the time interval over which average
velocity is computed become shorter and shorter, we can progress from average velocity to
instantaneous velocity.

Informally, we define the instantaneous velocity of a moving object at time t = a to be the
value that the average velocity approaches as we take smaller and smaller intervals of time
containing f = a. We will develop a more formal definition of instantaneous velocity soon,
and this definition will be the foundation of much of our work in calculus. For now, it is fine
to think of instantaneous velocity as follows: take average velocities on smaller and smaller
time intervals around a specific point. If those average velocities approach a single number,
then that number will be the instantaneous velocity at that point.

Activity 1.1.3. Each of the following questions concern s(t) = 64 — 16(t — 1)?, the
position function from Preview Activity 1.1.1.

a. Compute the average velocity of the ball on the time interval [1.5,2]. What is
different between this value and the average velocity on the interval [0, 0.5]?

b. Use appropriate computing technology to estimate the instantaneous velocity
of theball at t = 1.5. Likewise, estimate the instantaneous velocity of the ball at
t = 2. Which value is greater?
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c. How is the sign of the instantaneous velocity of the ball related to its behavior
at a given point in time? That is, what does positive instantaneous velocity tell
you the ball is doing? Negative instantaneous velocity?

d. Without doing any computations, what do you expect to be the instantaneous
velocity of the ball at t = 1? Why?

At this point we have started to see a close connection between average velocity and instan-
taneous velocity. Each is connected not only to the physical behavior of the moving object
but also to the geometric behavior of the graph of the position function. We are interested
in computing average velocities on the interval [a, b] for smaller and smaller intervals. In
order to make the link between average and instantaneous velocity more formal, think of
the value b as b = a + h, where h is a small (non-zero) number that is allowed to vary. Then
the average velocity of the object on the interval [a, a + 1] is

s(a+h)—s(a)

—

with the denominator being simply & because (a+h)—a = h. Note that when h < 0, AV[, 441
measures the average velocity on the interval [a + h, a].

AV[u,u+h] =

To find the instantaneous velocity at t = 4, we investigate what happens as the value of
approaches zero.

Example 1.1.2 Computing instantaneous velocity for a falling ball. The position function
for a falling ball is given by s(t) = 16 — 16t> (where s is measured in feet and ¢ in seconds).

a. Find an expression for the average velocity of the ball on a time interval of the form
[0.5,0.5 + h] where —-0.5 < h < 0.5and h # 0.

b. Use this expression to compute the average velocity on [0.5,0.75] and [0.4, 0.5].

c. Make a conjecture about the instantaneous velocity at t = 0.5.

Solution.

a. We make the assumptions that —0.5 < & < 0.5 and h # 0 because h cannot be zero
(otherwise there is no interval on which to compute average velocity) and because the
function only makes sense on the time interval 0 < ¢ < 1, as this is the duration of time
during which the ball is falling. We want to compute and simplify

s(0.5+ h) —s(0.5)
AVos0541 = =05 T =05

We start by finding s(0.5 + ). To do so, we follow the rule that defines the function s.

s(0.5+h) =16 — 16(0.5 + h)?
=16 —16(0.25 + h + h?)
=16 — 4 — 16h — 161>
=12 — 16h — 16h2.
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Now, returning to our computation of the average velocity, we find that

s(0.5+ h) —s(0.5)

AV0505+n] = 05+1-05
_ (12— 16h — 16h?) — (16 — 16(0.5)?)
- 0.5+h—-0.5
_ 12-16h —16h% - 12
- h
_ —16h — 16h?
=

At this point, we note two things: first, the expression for average velocity clearly de-
pends on i1, which it must, since as i changes the average velocity will change. Further,
we note that since 1 can never equal zero, we may remove the common factor of i from
the numerator and denominator. It follows that

AVio5,05+n = —16 — 16h.

b. From this expression we can compute the average for any small positive or negative
value of h. For instance, to obtain the average velocity on [0.5,0.75], we let h = 0.25,
and the average velocity is —16 — 16(0.25) = —20 ft/sec. To get the average velocity on
[0.4,0.5], we let h = —0.1, and compute the average velocity as

~16 - 16(=0.1) = —14.4 ft/sec.

c. We can even explore what happens to AVjg 5 0 5.1] as h gets closer and closer to zero. As
h approaches zero, —16h will also approach zero, so it appears that the instantaneous
velocity of the ball at t = 0.5 should be —16 ft/sec.

Activity 1.1.4. For the function given by s(t) = 64 — 16(t — 1)> from Preview Activ-
ity 1.1.1, find the most simplified expression you can for the average velocity of the
ball on the interval [2,2 + h]. Use your result to compute the average velocity on
[1.5,2] and to estimate the instantaneous velocity at f = 2. Finally, compare your
earlier work in Activity 1.1.2.

1.1.3 Summary

* For an object moving in a straight line with position function s(t), the average velocity
of the object on the interval from t = a to t = b, denoted AV, p), is given by the formula

s(b) —s(a

—a

¢ The average velocity on [a, b] can be viewed geometrically as the slope of the line be-
tween the points (4, s(2)) and (b, s(b)) on the graph of y = s(t), as shown in Figure 1.1.3.

5
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Figure 1.1.3: The graph of position function s together with the line through (a, s(a)) and
s(b)—s(a
b-a

(b, s(b)) whose slope is m = ) The line’s slope is the average rate of change of s on

the interval [a, b].

¢ Given a moving object whose position at time ¢ is given by a function s, the average
velocity of the object on the time interval [a, D] is given by AV[, ;) = W View-
ing the interval [a, b] as having the form [a, a + ], we equivalently compute average

velocity by the formula AV, 44 = w

¢ The instantaneous velocity of a moving object at a fixed time is estimated by consider-
ing average velocities on shorter and shorter time intervals that contain the instant of
interest.

1.1.4 Exercises

1.  Average velocity from position. Consider a car whose position, s, is given by the table

ts) [0]o2]o04]06[08]1
s(ft) |[0]05] 14386596

Find the average velocity over the interval 0 < t < 0.2. Estimate the velocity at ¢ = 0.2.
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Rate of calorie consumption. The table below shows the number of calories used per
minute as a function of an individual’s body weight for three sports:

Activity 1001b | 1201b | 1501b | 1701b | 2001b | 220 Ib
Walking 2.7 3.2 4 4.6 5.4 5.9
Bicycling 5.4 6.5 8.1 9.2 10.8 11.9
Swimming | 5.8 6.9 8.7 9.8 11.6 12.7

a) Determine the number of calories that a 200 Ib person uses in one half-hour of walk-
ing.

b) Who uses more calories, a 170 Ib person swimming for one hour, or a 220 Ib person
bicycling for a half-hour?

¢) Does the number of calories of a person walking increase or decrease as weight in-
creases?

Average rate of change - quadratic function. Let f(x) =9 — x2.

a) Compute each of the following expressions and interpret each as an average rate of
change:

@) f(M)-£(0)

1-0
Ly fB)=F)
(11) B

Lo fB)-fO)
(ili) —==5

b) Based on the graph sketched below, match each of your answers in (i) - (iii) with one
of the lines labeled A - F. Type the corresponding letter of the line segment next to the
appropriate formula. Clearly not all letters will be used.

fM) - f0)
— 1-0

’ fB) - )
— 3-1

fB3) - 1)
3-0

y = fix), A

WeBWork

WeBWork
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¥4 4. Comparing average rate of change of two functions. Consider the graphs of f(x) and
eatert g(x) below:
""”“‘g
497
2.9f
2.2 40 52 61 69 80
For each interval given below, decide whether the average rate of change of f(x) or g(x)
is greater over that particular interval.
Interval Which function has GREATER average rate of change?
0<x<4 (of oOg 0Obothhave an equal rate of change)
0<x<8 (of Og 0Oboth have an equal rate of change)
0<x<22 (of oOg 0Oboth have an equal rate of change)
52<x<6.1 (of oOg 0Obothhave an equal rate of change)
52<x<69 (of oOg 0Oboth have an equal rate of change)
-§ 5. Matching a distance graph to velocity. A car is driven at a constant speed, starting at

WeBWork

function of time past noon?

noon. Which of the following could be a graph of the distance the car has traveled as a
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A bungee jumper dives from a tower at time ¢t = 0. Her height /1 (measured in feet)
at time ¢ (in seconds) is given by the graph in Figure 1.1.4. In this problem, you may
base your answers on estimates from the graph or use the fact that the jumper’s height
function is given by s(t) = 100 cos(0.75¢) - e~ + 100.

200
150 1
100 1

50 1

5 10 15 20
Figure 1.1.4: A bungee jumper’s height function.

a. What is the change in vertical position of the bungee jumper between t = 0 and
t=15?

b. Estimate the jumper’s average velocity on each of the following time intervals:
[0,15],[0,2], [1, 6], and [8, 10]. Include units on your answers.

c. On what time interval(s) do you think the bungee jumper achieves her greatest
average velocity? Why?

d. Estimate the jumper’s instantaneous velocity at t = 5. Show your work and ex-
plain your reasoning, and include units on your answer.

e. Among the average and instantaneous velocities you computed in earlier ques-
tions, which are positive and which are negative? What does negative velocity
indicate?

A diver leaps from a 3 meter springboard. His feet leave the board at time t = 0,
he reaches his maximum height of 4.5 m at t = 1.1 seconds, and enters the water at
t = 2.45. Once in the water, the diver coasts to the bottom of the pool (depth 3.5 m),
touches bottom at t = 7, rests for one second, and then pushes off the bottom. From
there he coasts to the surface, and takes his first breath at t = 13.

a. Let s(t) denote the function that gives the height of the diver’s feet (in meters)
above the water at time t. (Note that the “height” of the bottom of the pool is
—3.5 meters.) Sketch a carefully labeled graph of s(¢) on the provided axes in
Figure 1.1.5. Include scale and units on the vertical axis. Be as detailed as possible.

b. Based on your graph in (a), what is the average velocity of the diver between
t =2.45and t = 7? Is his average velocity the same on every time interval within
[2.45,7]?
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8.

10

S Y
T T T T T ¢ T T Tt
2 4 6 8 10 12 | 2 4 6 8 1012
Figure 1.1.5: Axes for plotting s(f) Figure 1.1.6: Axes for plotting v(t)
in part (a). in part (c).

. Let the function v(t) represent the instantaneous vertical velocity of the diver at time

t (i.e. the speed at which the height function s(t) is changing; note that velocity in
the upward direction is positive, while the velocity of a falling object is negative).
Based on your understanding of the diver’s behavior, as well as your graph of the
position function, sketch a carefully labeled graph of v(t) on the axes provided in
Figure 1.1.6. Include scale and units on the vertical axis. Write several sentences
that explain how you constructed your graph, discussing when you expect v(t)
to be zero, positive, negative, relatively large, and relatively small.

. Isthere a connection between the two graphs that you can describe? What can you

say about the velocity graph when the height function is increasing? decreasing?
Make as many observations as you can.

According to the U.S. census, the population of the city of Grand Rapids, MI, was
181,843 in 1980; 189,126 in 1990; and 197,800 in 2000.

a. Between 1980 and 2000, by how many people did the population of Grand Rapids

grow?

. In an average year between 1980 and 2000, by how many people did the popula-

tion of Grand Rapids grow?

c. Just like we can find the average velocity of a moving body by computing change

in position over change in time, we can compute the average rate of change of any
function f. In particular, the average rate of change of a function f over an interval

[a, b] is the quotient
£0) = fla)

b-a

What does the quantity W measure on the graph of y = f(x) over the inter-

val [a,b]?

. Let P(t) represent the population of Grand Rapids at time ¢, where ¢ is measured

in years from January 1, 1980. What is the average rate of change of P on the
interval f = 0 to f = 20? What are the units on this quantity?
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e. If we assume the population of Grand Rapids is growing at a rate of approxi-
mately 4% per decade, we can model the population function with the formula

P(t) = 181843(1.04)!/1°.

Use this formula to compute the average rate of change of the population on the
intervals [5,10], [5,9], [5, 8], [5, 7], and [5, 6].

f. How fast do you think the population of Grand Rapids was changing on January
1,1985? Said differently, at what rate do you think people were being added to the
population of Grand Rapids as of January 1, 1985? How many additional people
should the city have expected in the following year? Why?

11



Chapter 1 Understanding the Derivative

1.2 The notion of limit

Motivating Questions

¢ What is the mathematical notion of /imit and what role do limits play in the study of
functions?

¢ What is the meaning of the notation lim,_,, f(x) = L?
¢ How do we go about determining the value of the limit of a function at a point?

* How do we manipulate average velocity to compute instantaneous velocity?

In Section 1.1 we used a function, s(¢), to model the location of a moving object at a given
time. Functions can model other interesting phenomena, such as the rate at which an auto-
mobile consumes gasoline at a given velocity, or the reaction of a patient to a given dosage
of a drug. We can use calculus to study how a function value changes in response to changes
in the input variable.

Think about the falling ball whose position function is given by s(t) = 64 — 16t2. Its average
velocity on the interval [1, x] is given by

s(x) —s(1) _ (64— 16x2) — (64 — 16) _l6- 16x2

AV = ——3 x—1 x—1

Note that the average velocity is a function of x. That is, the function g(x) = % tells us
the average velocity of the ball on the interval from t = 1 to t = x. To find the instantaneous
velocity of the ball when t = 1, we need to know what happens to g(x) as x gets closer and
closer to 1. But also notice that g(1) is not defined, because it leads to the quotient 0/0.

This is where the notion of a limit comes in. By using a limit, we can investigate the behavior
of g(x) as x gets arbitrarily close, but not equal, to 1. We first use the graph of a function to
explore points where interesting behavior occurs.

Preview Activity 1.2.1. Suppose that g is the function given by the graph below. Use
the graph in Figure 1.2.1 to answer each of the following questions.

a. Determine the values g(-2), g(-1), (0), g(1), and g(2), if defined. If the function
value is not defined, explain what feature of the graph tells you this.

b. For each of the valuesa = —1,a = 0, and a4 = 2, complete the following sentence:
“As x gets closer and closer (but not equal) to 4, g(x) gets as close as we want to
em minus 4.5emem .”

c. What happens as x gets closer and closer (but not equal) to 2 = 1? Does the
function g(x) get as close as we would like to a single value?

12
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RN

Figure 1.2.1: Graph of y = g(x) for Preview Activity 1.2.1.

1.2.1 The Notion of Limit

Limits give us a way to identify a trend in the values of a function as its input variable
approaches a particular value of interest. We need a precise understanding of what it means
to say “a function f has limit L as x approaches a.” To begin, think about a recent example.

In Preview Activity 1.2.1, we saw that as x gets closer and closer (but not equal) to 0, g(x)
gets as close as we want to the value 4. At first, this may feel counterintuitive, because the
value of g(0) is 1, not 4. But limits describe the behavior of a function arbitrarily close to a
fixed input, and the value of the function at the fixed input does not matter. More formally,’
we say the following.

Definition 1.2.2 Given a function f, a fixed input x = 4, and a real number L, we say that f
has limit L as x approaches a, and write

lim f(x) =L

provided that we can make f(x) as close to L as we like by taking x sufficiently close (but
not equal) to a. If we cannot make f(x) as close to a single value as we would like as x
approaches a, then we say that f does not have a limit as x approaches a.

Example 1.2.3 For the function g pictured in Figure 1.2.1, we make the following observa-
tions:

lim g(x) =3, lim g(x) =4, and lim g(x) = 1.

x—-1 x—0 x—2

When working from a graph, it suffices to ask if the function approaches a single value from
each side of the fixed input. The function value at the fixed input is irrelevant. This reasoning

"What follows here is not what mathematicians consider the formal definition of a limit. To be completely
precise, it is necessary to quantify both what it means to say “as close to L as we like” and “sufficiently close to a.”
That can be accomplished through what is traditionally called the epsilon-delta definition of limits. The definition
presented here is sufficient for the purposes of this text.

13
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explains the values of the three limits stated above.

However, g does not have a limit as x — 1. There is a jump in the graph at x = 1. If we
approach x =1 from the left, the function values tend to get close to 3, but if we approach
x =1 from the right, the function values get close to 2. There is no single number that all of
these function values approach. This is why the limit of g does not exist at x = 1.

For any function f, there are typically three ways to answer the question “does f have a
limit at x = 4, and if so, what is the limit?” The first is to reason graphically as we have just
done with the example from Preview Activity 1.2.1. If we have a formula for f(x), there are
two additional possibilities:

1 Evaluate the function at a sequence of inputs that approach a on either side (typically
using some sort of computing technology), and ask if the sequence of outputs seems
to approach a single value.

2 Use the algebraic form of the function to understand the trend in its output values as
the input values approach a.

The first approach produces only an approximation of the value of the limit, while the latter
can often be used to determine the limit exactly.

Example 1.2.4 Limits of Two Functions. For each of the following functions, we’d like to
know whether or not the function has a limit at the stated a-values. Use both numerical and
algebraic approaches to investigate and, if possible, estimate or determine the value of the
limit. Compare the results with a careful graph of the function on an interval containing the
points of interest.

a. f(x)=%;a:—1,a:—2 b. g(x) =sin(£);a=3,a=0
Solution. a. We first construct a graph of f along with tables of values near 4 = —1 and
a=-2

From Table 1.2.5, it appears that we can make f as close as we want to 3 by taking x suf-
ficiently close to —1, which suggests that limy_,_; f(x) = 3. This is also consistent with
the graph of f. To see this a bit more rigorously and from an algebraic point of view,

consider the formula for f: f(x) = 42 Agx — -1, (4-x?) - (4-(-1)? = 3, and

x+2°
(x+2) - (-1+2) =1,s0as x — —1, the numerator of f tends to 3 and the denominator

tends to 1, hence lim,_,_1 f(x) = % =3.

The situation is more complicated when x — -2, because f(-2) is not defined. If we try
to use a similar algebraic argument regarding the numerator and denominator, we observe
thatas x — -2, (4 —x?) —» (4—-(-2)?) = 0,and (x +2) — (-2 +2) = 0, s0 as x — -2, the
numerator and denominator of f both tend to 0. We call 0/0 an indeterminate form. This tells
us that there is somehow more work to do. From Table 1.2.6 and Figure 1.2.7, it appears that
f should have a limit of 4 at x = -2.

14
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x f(x) X f(x)
—0.9 2.9 -19 3.9
—-0.99  2.99 -1.99  3.99
—0.999  2.999 -1.999  3.999
~0.9999  2.9999 -1.9999  3.9999
1.1 3.1 2.1 4.1
-1.01  3.01 201 401
-1.001 3.001 -2.001 4.001 11
~1.0001  3.0001 —2.0001 4.0001 |
Table 1.2.5: Table of Table 1.2.6: Table of li T }

f valuesnear x = —=1.  f valuesnear x = 2.
Figure 1.2.7: Plot of f(x) on [-4,2].
To see algebraically why this is the case, observe that

2

) . - X
S = 1,
2-x)2+x)

= lim
x—-2 x+2

It is important to observe that, since we are taking the limit as x — —2, we are considering
x values that are close, but not equal, to —2. Because we never actually allow x to equal -2,
the quotient 22 has value 1 for every possible value of x. Thus, we can simplify the most

recent expression above, and find that
lim f(x)= lim 2 —x.
x—-2 x—-2

This limit is now easy to determine, and its value clearly is 4. Thus, from several points of
view we’ve seen that lim,_,_» f(x) = 4.

b. Next we turn to the function g, and construct two tables and a graph.

x g(x) X g(x) 2
2.9 0.84864 -0.1 0 g
2.99 0.86428 -0.01 0 /\ f\
2999  0.86585 -0.001 0 A !
2.9999 0.86601 -0.0001 0 wl Vl ?
3.1 0.88351 0.1 0 9
3.01 0.86777 0.01 0
3.001  0.86620 0.001 0 Figure 1.2.10: Plot of g(x) on [—4,4].
3.0001 0.86604 0.0001 0

Table 1.2.8: Table of Table 1.2.9: Table of
g values near x = 3. g values near x = 0.

First, as x — 3, it appears from the table values that the function is approaching a number
between 0.86601 and 0.86604. From the graph it appears that g(x) — ¢g(3) as x — 3. The

15
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exact value of g(3) = sin(§) is \/75, which is approximately 0.8660254038. This is convincing
evidence that
V3

o) = 7

As x — 0, we observe that 2 does not behave in an elementary way. When x is positive and
approaching zero, we are dividing by smaller and smaller positive values, and 7 increases
without bound. When x is negative and approaching zero, * decreases without bound. In
this sense, as we get close to x = 0, the inputs to the sine function are growing rapidly, and
this leads to increasingly rapid oscillations in the graph of g betweem 1 and —1. If we plot
the function g(x) = sin (£) with a graphing utility and then zoom in on x = 0, we see that
the function never settles down to a single value near the origin, which suggests that g does
not have a limit at x = 0.

How do we reconcile the graph with the righthand table above, which seems to suggest that
the limit of g as x approaches 0 may in fact be 0? The data misleads us because of the special
nature of the sequence of input values {0.1,0.01,0.001, .. .}. When we evaluate g(107%), we

get g(107%) = sin (10%,{) = sin(10%7t) = 0 for each positive integer value of k. But if we take a
different sequence of values approaching zero, say {0.3,0.03,0.003, . ..}, then we find that

1 k
7(3-107%) = sin (#) = sin (%) - ? ~ 0.866025.

That sequence of function values suggests that the value of the limit is @ Clearly the func-

tion cannot have two different values for the limit, so g has no limit as x — 0.

An important lesson to take from Example 1.2.4 is that tables can be misleading when de-
termining the value of a limit. While a table of values is useful for investigating the possible
value of a limit, we should also use other tools to confirm the value.

Activity 1.2.2. Estimate the value of each of the following limits by constructing ap-
propriate tables of values. Then determine the exact value of the limit by using alge-
bra to simplify the function. Finally, plot each function on an appropriate interval to
check your result visually.

a. lim,_ % b. lim,_,o

Vx+1-1

X

2+x)-8 .
% c. limy_

Recall that our primary motivation for considering limits of functions comes from our inter-
est in studying the rate of change of a function. To that end, we close this section by revisiting
our previous work with average and instantaneous velocity and highlighting the role that
limits play.
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1.2.2 Instantaneous Velocity

Suppose that we have a moving object whose position at time ¢ is given by a function s. We
know that the average velocity of the object on the time interval [a, b] is AV}, 4 = %Z(a)
We define the instantaneous velocity at a to be the limit of average velocity as b approaches
a. Note particularly that as b — a, the length of the time interval gets shorter and shorter
(while always including a). We will write IV;—, for the instantaneous velocity at t = a, and

thus

s(b) —s(a)

s = i AV = i 5552

Equivalently, if we think of the changing value b as being of the form b = a + h, where h is
some small number, then we may instead write

s(a+h)—s(a)

Vi = }IIEI})AV[a,aHI] = }llli% h

Again, the most important idea here is that to compute instantaneous velocity, we take a
limit of average velocities as the time interval shrinks.

Activity 1.2.3. Consider a moving object whose position function is given by s(t) = t2,
where s is measured in meters and ¢ is measured in minutes.

a. Determine the most simplified expression for the average velocity of the object
on the interval [3,3 + K], where h > 0.

b. Determine the average velocity of the object on the interval [3, 3.2]. Include units
on your answer.

c. Determine the instantaneous velocity of the object when t = 3. Include units on
your answer.

The closing activity of this section asks you to make some connections among average ve-
locity, instantaneous velocity, and slopes of certain lines.

Activity 1.2.4. For the moving object whose position s at time ¢ is given by the graph
in Figure 1.2.11, answer each of the following questions. Assume that s is measured
in feet and t is measured in seconds.
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Chapter 1 Understanding the Derivative

Figure 1.2.11: Plot of the position function y = s(f) in Activity 1.2.4.

a. Use the graph to estimate the average velocity of the object on each of the fol-
lowing intervals: [0.5,1], [1.5,2.5], [0, 5]. Draw each line whose slope represents
the average velocity you seek.

b. How could you use average velocities or slopes of lines to estimate the instan-
taneous velocity of the object at a fixed time?

c. Use the graph to estimate the instantaneous velocity of the object when ¢t = 2.
Should this instantaneous velocity at t = 2 be greater or less than the average
velocity on [1.5,2.5] that you computed in (a)? Why?

1.2.3 Summary

18

Limits enable us to examine trends in function behavior near a specific point. In partic-
ular, taking a limit at a given point asks if the function values nearby tend to approach
a particular fixed value.

We read lim,_,; f(x) = L, as “the limit of f as x approaches a is L,” which means that
we can make the value of f(x) as close to L as we want by taking x sufficiently close
(but not equal) to a.

To find lim,_,, f(x) for a given value of a and a known function f, we can estimate this
value from the graph of f, or we can make a table of function values for x-values that
are closer and closer to a. If we want the exact value of the limit, we can work with the
function algebraically to understand how different parts of the formula for f change
asx — a.

We find the instantaneous velocity of a moving object at a fixed time by taking the limit
of average velocities of the object over shorter and shorter time intervals containing the
time of interest.



1.2 The notion of limit

1.2.4 Exercises

Limits on a piecewise graph. Use the figure below, which gives a graph of the function g8

f(x), to give values for the indicated limits. Weaterk
(a) lim1 f(x)
x—-
(b) lim f(x)
x—0
(c) lirr} f(x)
28 (d) lim f(x)
x—4

.
=18
Estimating a limit numerically. Use a graph to estimate the limit <&
sin(60
lim (66) .
6—0 0

Note: 0 is measured in radians. All angles will be in radians in this class unless other-
wise specified.

Limits for a piecewise formula. For the function <&

x2—-4, 0<x<4
f(x) =14, x=4
3x+0, 4<x

use algebra to find each of the following limits:
lim f(x)

x—4t

lim f(x)

x—4"

lim f(x)

x—4

Sketch a graph of f(x) to confirm your answers.

Evaluating a limit algebraically. Evaluate the limit <&
x% - 49

m
x—-7 X+7

19



Chapter 1 Understanding the Derivative

a.

5.  Consider the function whose formula is f(x) = 1}?2__’;4 .
What is the domain of f?
Use a sequence of values of x near a4 = 2 to estimate the value of lim,_,, f(x), if

b.

you think the limit exists. If you think the limit doesn’t exist, explain why.
16—x*
x2—4
exactly, if it exists, or to explain how your work shows the limit fails to exist.
Discuss how your findings compare to your results in (b).

Use algebra to simplify the expression and hence work to evaluate lirré f(x)
X—

True or false: f(2) = —8. Why?

True or false: 1}(6{—_321 = —4—x%. Why? How is this equality connected to your work
above with the function f?

Based on all of your work above, construct an accurate, labeled graph of y = f(x)

on theinterval [1, 3], and write a sentence that explains what you now know about
l6—x*

limx_>2 e

6. Letg(x)= -3

a.

b.

x+3 °
What is the domain of g?

Use a sequence of values near a = —3 to estimate the value of lim,_,_3 g(x), if you
think the limit exists. If you think the limit doesn’t exist, explain why.

[x+3|
x+3
exactly, if it exists, or to explain how your work shows the limit fails to exist.
Discuss how your findings compare to your results in (b). (Hint: |a| = 2 whenever
a > 0,but |a| = —a whenever a < 0.)

Use algebra to simplify the expression and hence work to evaluate lim3 g(x)
x——

. True or false: g(-3) = —1. Why?

True or false: — |f:r§‘ = —1. Why? How is this equality connected to your work

above with the function g?

Based on all of your work above, construct an accurate, labeled graph of y = g(x)
on the interval [—4, —2], and write a sentence that explains what you now know
about lim,_,_3 g(x).

7. For each of the following prompts, sketch a graph on the provided axes of a function
that has the stated properties.

a.

20

y = f(x) such that
e f(-2)=2andlim, f(x) =1
e f(-1)=3and lim,_,_; f(x) =3
e f(1) is not defined and lim,_,; f(x) =0
* f(2) =1and lim,_,, f(x) does not exist.



1.2 The notion of limit

b. y = g(x) such that

e 9(-2)=3,9(-1)=-1,9(1) = -2,and g(2) = 3

e Atx = -2,-1,1 and 2, g has a limit, and its limit equals the value of the
function at that point.

¢ 4(0) is not defined and lim,_,o g(x) does not exist.

34 34

Figure 1.2.12: Axes for plotting vy = f(x) in (a) and y = g(x) in (b).

A bungee jumper dives from a tower at time + = 0. Her height s in feet at time ¢ in
seconds is given by s(t) = 100 cos(0.75¢t) - e=%-% + 100.

a. Write an expression for the average velocity of the bungee jumper on the interval
[1,1+h].

b. Use computing technology to estimate the value of the limit as 1 — 0 of the
quantity you found in (a).

c. What is the meaning of the value of the limit in (b)? What are its units?
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Chapter 1 Understanding the Derivative

1.3 The derivative of a function at a point

Motivating Questions

¢ How is the average rate of change of a function on a given interval defined, and what
does this quantity measure?

e How is the instantaneous rate of change of a function at a particular point defined?
How is the instantaneous rate of change linked to average rate of change?

* What is the derivative of a function at a given point? What does this derivative value
measure? How do we interpret the derivative value graphically?

¢ How are limits used formally in the computation of derivatives?

The instantaneous rate of change of a function is an idea that sits at the foundation of calculus.
It is a generalization of the notion of instantaneous velocity and measures how fast a partic-
ular function is changing at a given point. If the original function represents the position of
a moving object, this instantaneous rate of change is precisely the velocity of the object. In
other contexts, instantaneous rate of change could measure the number of cells added to a
bacteria culture per day, the number of additional gallons of gasoline consumed by increas-
ing a car’s velocity one mile per hour, or the number of dollars added to a mortgage payment
for each percentage point increase in interest rate. The instantaneous rate of change can also
be interpreted geometrically on the function’s graph, and this connection is fundamental to
many of the main ideas in calculus.

Recall that for a moving object with position function s, its average velocity on the time
interval t = a to t = a + h is given by the quotient

s(a+h)—s(a)

AVigasn) = 7

In a similar way, we make the following definition for an arbitrary function y = f(x).

Definition 1.3.1 For a function f, the average rate of change of f on the interval [a,a + h] is
given by the value
_ fla+h)-f(a)

AV[u,u+h] = n

Equivalently, if we want to consider the average rate of change of f on [a, b], we compute

f) - fa)

AV[a,b] = b—a

It is essential that you understand how the average rate of change of f on an interval is
connected to its graph.
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1.3 The derivative of a function at a point

Preview Activity 1.3.1. Suppose that f is the function given by the graph below and
that a and a + h are the input values as labeled on the x-axis. Use the graph in Fig-
ure 1.3.2 to answer the following questions.

a a+h

Figure 1.3.2: Plot of y = f(x) for Preview Activity 1.3.1.

a. Locate and label the points (4, f(a)) and (a + h, f(a + h)) on the graph.

b. Construct a right triangle whose hypotenuse is the line segment from (a, f(a))
to (a + h, f(a + h)). What are the lengths of the respective legs of this triangle?

c. Whatis the slope of the line that connects the points (a, f(a)) and (a+h, f(a+h))?

d. Write a meaningful sentence that explains how the average rate of change of the
function on a given interval and the slope of a related line are connected.

1.3.1 The Derivative of a Function at a Point

Just as we defined instantaneous velocity in terms of average velocity, we now define the
instantaneous rate of change of a function at a point in terms of the average rate of change
of the function f over related intervals. This instantaneous rate of change of f at a is called
“the derivative of f ata,” and is denoted by f’(a).

Definition 1.3.3 Let f be a function and x = a a value in the function’s domain. We define
the derivative of f with respect to x evaluated at x = 4, denoted f’(a), by the formula

h 7

’ =1
f(a) lim
provided this limit exists.

Aloud, we read the symbol f’(a) as either “ f-prime at a” or “the derivative of f evaluated
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Chapter 1 Understanding the Derivative

at x = a.” Much of the next several chapters will be devoted to understanding, computing,
applying, and interpreting derivatives. For now, we observe the following important things.

Note 1.3.4

¢ The derivative of f at the value x = a is defined as the limit of the average rate of
change of f on the interval [a,a + h1] as h — 0. This limit may not exist, so not every
function has a derivative at every point.

* We say that a function is differentiable at x = a if it has a derivative at x = a.

¢ The derivative is a generalization of the instantaneous velocity of a position function:
if y = s(t) is a position function of a moving body, s’(a) tells us the instantaneous
velocity of the body at time ¢ = a.

¢ Because the units on w are “units of f(x) per unit of x,” the derivative has
these very same units. For instance, if s measures position in feet and ¢ measures time
in seconds, the units on s’(a) are feet per second.

* Because the quantity w represents the slope of the line through (4, f(a)) and
(a + h, f(a + h)), when we compute the derivative we are taking the limit of a collec-
tion of slopes of lines. Thus, the derivative itself represents the slope of a particularly
important line.

We first consider the derivative at a given value as the slope of a certain line.

When we compute an instantaneous rate of change, we allow the interval [a, a + ] to shrink
as h — 0. We can think of one endpoint of the interval as “sliding towards” the other.
In particular, provided that f has a derivative at (a, f(a)), the point (a + h, f(a + h)) will
approach (a, f(a)) as h — 0. Because the process of taking a limit is a dynamic one, it can
be helpful to use computing technology to visualize it. One option is a java applet in which
the user is able to control the point that is moving. For a helpful collection of examples,
consider the work of David Austin of Grand Valley State University, and this particularly
relevant example. For applets that have been built in Geogebra!, see Marc Renault’s library
via Shippensburg University, with this example being especially fitting for our work in this
section.

Figure 1.3.5 shows a sequence of figures with several different lines through the points
(a, f(a)) and (a + h, f(a + h)), generated by different values of h. These lines (shown in
the first three figures in magenta), are often called secant lines to the curve y = f(x). A se-

cant line to a curve is simply a line that passes through two points on the curve. For each

such line, the slope of the secant line is m = w, where the value of I depends on

the location of the point we choose. We can see in the diagram how, as i — 0, the secant
lines start to approach a single line that passes through the point (4, f(a)). If the limit of the
slopes of the secant lines exists, we say that the resulting value is the slope of the tangent
line to the curve. This tangent line (shown in the right-most figure in green) to the graph of
y = f(x) at the point (a4, f(a)) has slope m = f’(a).

You can even consider building your own examples; the fantastic program Geogebra is available for free down-
load and is easy to learn and use.
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1.3 The derivative of a function at a point

Figure 1.3.5: A sequence of secant lines approaching the tangent line to f at (a, f(a)).

If the tangent line at x = a exists, the graph of f looks like a straight line when viewed up
close at (a, f(a)). In Figure 1.3.6 we combine the four graphs in Figure 1.3.5 into the single
one on the left, and zoom in on the box centered at (4, f(a)) on the right. Note how the
tangent line sits relative to the curve y = f(x) at (a, f(2)) and how closely it resembles the
curve near X = 4.

Figure 1.3.6: A sequence of secant lines approaching the tangent line to f at (a, f(a)). At
right, we zoom in on the point (a, f(a)). The slope of the tangent line (in green) to f at

(a, f(a)) is given by f(a).

Note 1.3.7 The instantaneous rate of change of f with respect to x at x = a, f’(a), also mea-
sures the slope of the tangent line to the curve y = f(x) at (a, f(a)).

The following example demonstrates several key ideas involving the derivative of a function.

Example 1.3.8 Using the limit definition of the derivative. For the function f(x) = x — x?,

use the limit definition of the derivative to compute f’(2). In addition, discuss the meaning
of this value and draw a labeled graph that supports your explanation.

Solution. From the limit definition, we know that
. f+h)-f(2)
() = lim 222 1)
f'@ = lim p
Now we use the rule for f,and observe that f(2) =2-2? = —2and f(2+h) = (2+h)—(2+h)>%.
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Chapter 1 Understanding the Derivative

Substituting these values into the limit definition, we have that

pon o (2+H) =2+ 1) -(-2)
N

In order to let 1 — 0, we must simplify the quotient. Expanding and distributing in the
numerator,

2+h—-4—-4h—h*+2

'(2) =1i .
f'@ = lim p
Combining like terms, we have

—3h — h?
'(2) = lim ———.
f@ ook

Next, we remove a common factor of i in both the numerator and denominator and find
that

f(@) = lim(=3 - )

Finally, we are able to take the limit as # — 0, and thus conclude that f’(2) = —3. We note
that f’(2) is the instantaneous rate of change of f at the point (2, —2). It is also the slope of
the tangent line to the graph of y = x — x2 at the point (2, —2). Figure 1.3.9 shows both the
function and the line through (2, —2) with slope m = f'(2) = -3.

\m =12

Figure 1.3.9: The tangent line to y = x — x? at the point (2, -2).

The following activities will help you explore a variety of key ideas related to derivatives.
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1.3 The derivative of a function at a point

Activity 1.3.2. Consider the function f whose formula is f(x) =3 —2x.

a. What familiar type of function is f? What can you say about the slope of f at
every value of x?

b. Compute the average rate of change of f on the intervals [1,4], [3,7],and [5,5+
h]; simplify each result as much as possible. What do you notice about these
quantities?

c. Use the limit definition of the derivative to compute the exact instantaneous rate
of change of f with respect to x at the value 4 = 1. That is, compute f’(1) using
the limit definition. Show your work. Is your result surprising?

d. Without doing any additional computations, what are the values of f’(2), f'(m),
and f'(-=V2)? Why?

Activity 1.3.3. A water balloon is tossed vertically in the air from a window. The
balloon’s height in feet at time ¢ in seconds after being launched is given by s(f) =
—16t2 + 16t + 32. Use this function to respond to each of the following questions.

a. Sketch an accurate, labeled graph of s on the axes provided in Figure 1.3.10. You
should be able to do this without using computing technology.

321

161

Figure 1.3.10: Axes for plotting y = s(t) in Activity 1.3.3.

b. Compute the average rate of change of s on the time interval [1, 2]. Include units
on your answer and write one sentence to explain the meaning of the value you
found.

c. Use the limit definition to compute the instantaneous rate of change of s with
respect to time, ¢, at the instant 2 = 1. Show your work using proper notation,
include units on your answer, and write one sentence to explain the meaning of
the value you found.
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Chapter 1 Understanding the Derivative

d. On your graph in (a), sketch two lines: one whose slope represents the average
rate of change of s on [1, 2], the other whose slope represents the instantaneous
rate of change of s at the instant a = 1. Label each line clearly.

e. For what values of a do you expect s’(a) to be positive? Why? Answer the same
questions when “positive” is replaced by “negative” and “zero.”

Activity 1.3.4. A rapidly growing city in Arizona has its population P at time ¢,
where f is the number of decades after the year 2010, modeled by the formula P(¢) =
25000¢*/. Use this function to respond to the following questions.

a. Sketch an accurate graph of P for t = 0 to t = 5 on the axes provided in Fig-
ure 1.3.11. Label the scale on the axes carefully.

Figure 1.3.11: Axes for plotting y = P(t) in Activity 1.3.4.

b. Compute the average rate of change of P between 2030 and 2050. Include units
on your answer and write one sentence to explain the meaning (in everyday
language) of the value you found.

c. Use the limit definition to write an expression for the instantaneous rate of
change of P with respect to time, ¢, at the instant 2 = 2. Explain why this limit
is difficult to evaluate exactly.

d. Estimate the limit in (c) for the instantaneous rate of change of P at the instant
a = 2 by using several small /i values. Once you have determined an accurate
estimate of P’(2), include units on your answer, and write one sentence (using
everyday language) to explain the meaning of the value you found.

e. On your graph above, sketch two lines: one whose slope represents the average
rate of change of P on [2, 4], the other whose slope represents the instantaneous
rate of change of P at the instant 4 = 2.
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1.3 The derivative of a function at a point

f. In a carefully-worded sentence, describe the behavior of P’(a) as a increases in
value. What does this reflect about the behavior of the given function P?

1.3.2 Summary

¢ The average rate of change of a function f on the interval [a, b] is W The units
on the average rate of change are units of f(x) per unit of x, and the numerical value
of the average rate of change represents the slope of the secant line between the points
(a, f(a))and (b, f(b)) onthe graphof y = f(x). If we view the interval as being [a, a+/1]
instead of [a, b], the meaning is still the same, but the average rate of change is now
computed by L&=/@)

P y 3

¢ The instantaneous rate of change with respect to x of a function f at a value x = a

is denoted f’(a) (read “the derivative of f evaluated at a” or “ f-prime at a”) and is

defined by the formula
fla+h) - f(a)
’ — 1 ,
f'(a) = lim p
provided the limit exists. Note particularly that the instantaneous rate of change at

x = a is the limit of the average rate of change on [a,a + h]ash — 0.

e Provided the derivative f’(a) exists, its value tells us the instantaneous rate of change
of f with respect to x at x = a, which geometrically is the slope of the tangent line to
the curve y = f(x) at the point (a, f(a)). We even say that f’(a) is the “slope of the
curve” at the point (a, f(a)).

¢ Limits allow us to move from the rate of change over an interval to the rate of change
at a single point.
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1.3.3 Exercises

1.

2.

30

Estimating derivative values graphically. Consider the function y = f(x) graphed
below.

Give the x-coordinate of a point where:

A. the derivative of the function is negative

B. the value of the function is negative

C. the derivative of the function is smallest

(most negative)
\ TN D. the derivative of the function is zero
A 3\/ E. the derivative of the fu.nctllon is approxi-
mately the same as the derivative at x = 2.25
(be sure that you give a point that is distinct
from x = 2.25!)

Tangent line to a curve. The figure below shows a function g(x) and its tangent line at
the point B = (6.8, 2). If the point A on the tangent line is (6.74, 2.05), fill in the blanks
below to complete the statements about the function g at the point B.

g( ) =




1.3 The derivative of a function at a point

3. Interpreting values and slopes from a graph. Consider the graph of the function f(x)
shown below. Using this graph, for each of the following pairs of numbers decide ****
which is larger. Be sure that you can explain your answer.

A.f(6) (o< o= O>) f(8

B.f6)- f4) (o< o= 0> f4)-f2)
IS0 (. g ) [0
D.f'(2) (@< o= O=>) f'(8)

4. Finding an exact derivative value algebraically. Find the derivative of g(t) = 2t + 2t

att = 7 algebraically.

WeBWork

5.  Estimating a derivative from the limit definition. Estimate f’(3) for f(x) = 6. Be sure Rx§

your answer is accurate to within 0.1 of the actual value. Weaterk

6. Consider the graph of y = f(x) provided in Figure 1.3.12.

a. On the graph of y = f(x), sketch
and label the following quantities:

e the secant line to y = f(x) on
the interval [-3,-1] and the
secant line to y = f(x) on the
interval [0, 2].

e the tangent line to y = f(x) at
x = =3 and the tangent line to

y=f(x)atx =0.

b. What is the approximate value of
the average rate of change of f on
[-3,-1]? On [0,2]? How are these
values related to your work in (a)?

c. What is the approximate value of
the instantaneous rate of change of
fatx = =37 Atx = 0? How are
these values related to your work in

(a)?

Figure 1.3.12: Plot of y = f(x).

7. For each of the following prompts, sketch a graph on the provided axes in Figure 1.3.13

of a function that has the stated properties.
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-3+ 34

Figure 1.3.13: Axes for plotting y = f(x) in (a) and y = g(x) in (b).

a. y = f(x) such that

* the average rate of change of f on [-3, 0] is —2 and the average rate of change
of fon[1,3]is 0.5 and

* the instantaneous rate of change of f at x = —1 is —1 and the instantaneous
rate of change of f at x = 2is 1.

b. y = g(x) such that
o 109D _ ang {020 - g ang
. g’(Z) =1and g,(_l) =0

8.  Suppose that the population, P, of China (in billions) can be approximated by the func-
tion P(t) = 1.15(1.014)" where t is the number of years since the start of 1993.

a. According to the model, what was the total change in the population of China
between January 1, 1993 and January 1, 2000? What will be the average rate of
change of the population over this time period? Is this average rate of change
greater or less than the instantaneous rate of change of the population on Janu-
ary 1, 2000? Explain and justify, being sure to include proper units on all your
answers.

b. According to the model, what is the average rate of change of the population of
China in the ten-year period starting on January 1, 2012?

c. Write an expression involving limits that, if evaluated, would give the exact in-
stantaneous rate of change of the population on today’s date. Then estimate the
value of this limit (discuss how you chose to do so) and explain the meaning (in-
cluding units) of the value you have found.

d. Find an equation for the tangent line to the function y = P(t) at the point where
the t-value is given by today’s date.
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1.3 The derivative of a function at a point

The goal of this problem is to compute the value of the derivative at a point for several
different functions, where for each one we do so in three different ways, and then to
compare the results to see that each produces the same value.

For each of the following functions, use the limit definition of the derivative to compute
the value of f’(a) using three different approaches: strive to use the algebraic approach
first (to compute the limit exactly), then test your result using numerical evidence (with
small values of /), and finally plot the graph of y = f(x) near (a, f(a)) along with the
appropriate tangent line to estimate the value of f’(a) visually. Compare your findings
among all three approaches; if you are unable to complete the algebraic approach, still
work numerically and graphically.

a. f(x)=x*-3x,a=2 d f(x)=2-|x-1|,a=1
b. f(x):%,azl
c f(x)=+x,a=1 e. f(x)=sin(x),a=73%
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1.4 The derivative function

Motivating Questions

* How does the limit definition of the derivative of a function f lead to an entirely new
(but related) function f’?

* What is the difference between writing f’(a) and f'(x)?
* How is the graph of the derivative function f’(x) related to the graph of f(x)?

* What are some examples of functions f for which f’ is not defined at one or more
points?

We now know that the instantaneous rate of change of a function f(x) at x = a, or equiva-
lently the slope of the tangent line to the graph of ¥ = f(x) at x = a, is given by the value
f'(a). In all of our examples so far, we have identified a particular value of 4 as our point
of interest: a = 1, a = 3, etc. But it is not hard to imagine that we will often be interested
in the derivative value for more than just one a-value, and possibly for many of them. In
this section, we explore how we can move from computing the derivative at a single point to
computing a formula for f’(a) at any point a. Indeed, the process of “taking the derivative”
generates a new function, denoted by f’(x), derived from the original function f(x).

Preview Activity 1.4.1. Consider the function f(x) = 4x — x2.

a. Use the limit definition to compute the derivative values: f’(0), f'(1), f’(2), and

f@3).

b. Observe that the work to find f’(a) is the same, regardless of the value of a.
Based on your work in (a), what do you conjecture is the value of f’(4)? How
about f’(5)? (Note: you should not use the limit definition of the derivative to
find either value.)

c. Conjecture a formula for f’(a) that depends only on the value a. That is, in the
same way that we have a formula for f(x) (recall f(x) = 4x — x2), see if you can
use your work above to guess a formula for f’(a) in terms of a.

1.4.1 How the derivative is itself a function

In your work in Preview Activity 1.4.1 with f(x) = 4x — x2, you may have found several
patterns. One comes from observing that f'(0) = 4, f'(1) = 2, f’(2) = 0, and f'(3) = -2.
That sequence of values leads us naturally to conjecture that f'(4) = —4 and f’(5) = —6. We
also observe that the particular value of a has very little effect on the process of computing
the value of the derivative through the limit definition. To see this more clearly, we compute
f'(a), where a represents a number to be named later. Following the now standard process

34



1.4 The derivative function

of using the limit definition of the derivative,

lim fla+h)-f(a) 4(a+h)—(a+h)?—(4a —a?)

4 = = 1.
fla) h—0 h hli% h
 da+4h—-a?>-2ha-h2-4a+a®>  4h—2ha - K2
= lim = lim ———
h—0 h h—0 h
h(d-2a—-h
= lim w = lim(4 — 2a — h).
h—0 h h—0

Here we observe that neither 4 nor 2a depend on the value of ,soash — 0, (4—-2a —h) —
(4 —2a). Thus, f'(a) =4 - 2a.

This result is consistent with the specific values we found above: e.g., f'(3) =4 - 2(3) = 2.
And indeed, our work confirms that the value of 2 has almost no bearing on the process of
computing the derivative. We note further that the letter being used is immaterial: whether
we call it a, x, or anything else, the derivative at a given value is simply given by “4 minus
2 times the value.” We choose to use x for consistency with the original function given by
y = f(x), as well as for the purpose of graphing the derivative function. For the function
f(x) = 4x — x?, it follows that f’(x) = 4 — 2x.

Because the value of the derivative function is linked to the graph of the original function,
it makes sense to look at both of these functions plotted on the same domain.

(0,4)
4Q
3..
(1,2)
2 Q
14
(2,0)
1 2\ 3 4
14
(3772)
-2 )
3l y=f(x
-4 4 Q@
(4774)

Figure 1.4.1: The graphs of f(x) = 4x — x? (at left) and f’(x) = 4 — 2x (at right). Slopes on
the graph of f correspond to heights on the graph of f’.

In Figure 1.4.1, on the left we show a plot of f(x) = 4x—x? together with a selection of tangent
lines at the points we’ve considered above. On the right, we show a plot of f'(x) = 4 — 2x
with emphasis on the heights of the derivative graph at the same selection of points. Notice
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Chapter 1 Understanding the Derivative

the connection between colors in the left and right graphs: the green tangent line on the
original graph is tied to the green point on the right graph in the following way: the slope of
the tangent line at a point on the lefthand graph is the same as the height at the corresponding
point on the righthand graph. That is, at each respective value of x, the slope of the tangent
line to the original function is the same as the height of the derivative function. Do note,
however, that the units on the vertical axes are different: in the left graph, the vertical units
are simply the output units of f. On the righthand graph of y = f’(x), the units on the
vertical axis are units of f per unit of x.

An excellent way to explore how the graph of f(x) generates the graph of f’(x) is through a
java applet. See, for instance, the applets at http://gvsu.edu/s/5C or http://gvsu.edu/s/
5D, via the sites of Austin and Renault!.

In Section 1.3 when we first defined the derivative, we wrote the definition in terms of a
value a to find f’(a). As we have seen above, the letter a is merely a placeholder, and it
often makes more sense to use x instead. For the record, here we restate the definition of the
derivative.

Definition 1.4.2 Let f be a function and x a value in the function’s domain. We define the

feAh)-f
7

derivative of f, anew function called f’, by the formula f’(x) = limy,_,o S3y provided

this limit exists.

We now have two different ways of thinking about the derivative function:

1 given a graph of y = f(x), how does this graph lead to the graph of the derivative
function y = f’(x)? and

2 given a formula for y = f(x), how does the limit definition of derivative generate a
formula for y = f'(x)?

Both of these issues are explored in the following activities.

Activity 1.4.2. For each given graph of y = f(x), sketch an approximate graph of its
derivative function, y = f’(x), on the axes immediately below. The scale of the grid
for the graph of f is 1 x 1; assume the horizontal scale of the grid for the graph of f”
is identical to that for f. If necessary, adjust and label the vertical scale on the axes for
f

When you are finished with all 8 graphs, write several sentences that describe your
overall process for sketching the graph of the derivative function, given the graph
the original function. What are the values of the derivative function that you tend
to identify first? What do you do thereafter? How do key traits of the graph of the
derivative function exemplify properties of the graph of the original function?

David Austin, http:/ /gvsu.edu/s/5r; Marc Renault, http:/ /gvsu.edu/s/5p.
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For a dynamic investigation that allows you to experiment with graphing f” when given the
graph of f, see http://gvsu.edu/s/8y.?

Now;, recall the opening example of this section: we began with the function y = f(x) = 4x—

2Marc Renault, Calculus Applets Using Geogebra.
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Activity 1.4.3. For each of the listed functions, determine a formula for the derivative
function. For the first two, determine the formula for the derivative by thinking about
the nature of the given function and its slope at various points; do not use the limit
definition. For the latter four, use the limit definition. Pay careful attention to the
function names and independent variables. It is important to be comfortable with us-
ing letters other than f and x. For example, given a function p(z), we call its derivative

p'(2).

x? and used the limit definition of the derivative to show that f’(a) = 4 —2a, or equivalently
that f’(x) = 4—2x. We subsequently graphed the functions f and f’ as shown in Figure 1.4.1.
Following Activity 1.4.2, we now understand that we could have constructed a fairly accurate
graph of f’(x) without knowing a formula for either f or f’. At the same time, it is useful to
know a formula for the derivative function whenever it is possible to find one.

In the next activity, we further explore the more algebraic approach to finding f’(x): given a
formula for y = f(x), the limit definition of the derivative will be used to develop a formula

for f(x).

a. f(x)=1 c. p(z) = z? e. F(t)=1
b. g(t) =t d. q(s)=s° f. G(y) =y

1.4.2 Summary

The limit definition of the derivative, f’(x) = limy_ w, produces a value for
each x at which the derivative is defined, and this leads to a new function y = f’(x).
It is especially important to note that taking the derivative is a process that starts with
a given function (f) and produces a new, related function (f).

There is essentially no difference between writing f’(a) (as we did regularly in Sec-
tion 1.3) and writing f’(x). In either case, the variable is just a placeholder that is used
to define the rule for the derivative function.

Given the graph of a function y = f(x), we can sketch an approximate graph of its
derivative y = f’(x) by observing that heights on the derivative’s graph correspond to
slopes on the original function’s graph.

In Activity 1.4.2, we encountered some functions that had sharp corners on their graphs,
such as the shifted absolute value function. At such points, the derivative fails to exist,
and we say that f is not differentiable there. For now, it suffices to understand this as
a consequence of the jump that must occur in the derivative function at a sharp corner
on the graph of the original function.
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1.4.3 Exercises

oy 1. ghle derivative function graphically. Consider the function f(x) shown in the graph
WeBWorkK e OW-

]

Carefully sketch the derivative function of the
given function (you will want to estimate val-
ues on the derivative function at different x val-
ues as you do this). Use your derivative func-
tion graph to estimate the following values on
the derivative function.

atx = -3 -1 1 3
the derivative is

2.  Applying the limit definition of the derivative. Find a formula for the derivative of
estert the function g(x) = 4x? — 8 using difference quotients.

3.  Sketching the derivative. For the function f(x) shown in the graph below, sketch a
estere graph of the derivative. You will then be picking which of the following is the correct
derivative graph, but should be sure to first sketch the derivative yourself.

™~

Which of the following graphs is the derivative of f(x)?
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Comparing function and derivative values. The graph of a function f is shown below.

WeBWork

®l x2

m ®3 T T /

At which of the labeled x-valuesis f(x) least? f(x) greatest? f’(x)least? f’(x) greatest?

Limit definition of the derivative for a rational function. Let &
1
xX)= ——
f) = —

Find (i) f(3), (i) f'(5), (iii) f"(6), and (iv) f'(8).

Let f be a function with the following properties: f is differentiable at every value of
x (thatis, f has a derivative at every point), f(-2) = 1, and f'(-2) = -2, f'(-1) = -1,
f0)=0, f/(1)=1,and f'(2) = 2.
a. On the axes provided at left in Figure 1.4.3, sketch a possible graph of y = f(x).
Explain why your graph meets the stated criteria.

b. Conjecture a formula for the function y = f(x). Use the limit definition of the
derivative to determine the corresponding formula for y = f’(x). Discuss both
graphical and algebraic evidence for whether or not your conjecture is correct.
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-3+ -3+

Figure 1.4.3: Axes for plotting y = f(x) in (a) and y = f'(x) in (b).
7.  Consider the function g(x) = x? — x + 3.
a. Use the limit definition of the derivative to determine a formula for g’(x).

b. Use a graphing utility to plot both y = g(x) and your result for y = g’(x); does
your formula for g’(x) generate the graph you expected?

¢. Use the limit definition of the derivative to find a formula for p’(x) where p(x) =
5x2 — 4x + 12.

d. Compare and contrast the formulas for g’(x) and p’(x) you have found. How do
the constants 5, 4, 12, and 3 affect the results?

8. Let g be a continuous function (that is, one with no jumps or holes in the graph) and
suppose that a graph of y = g’(x) is given by the graph on the right in Figure 1.4.4.

2 2
—C) Q)
2 2 2 2
O ) O
2 -2

Figure 1.4.4: Axes for plotting y = g(x) and, at right, the graph of y = g’(x).
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1.4 The derivative function

a. Observe that for every value of x that satisfies 0 < x < 2, the value of g’(x) is
constant. What does this tell you about the behavior of the graph of ¥ = g(x) on
this interval?

b. On what intervals other than 0 < x < 2 do you expect y = g(x) to be a linear
function? Why?

c. At which values of x is g’(x) not defined? What behavior does this lead you to
expect to see in the graph of y = g(x)?

d. Suppose that g(0) = 1. On the axes provided at left in Figure 1.4.4, sketch an
accurate graph of vy = g(x).

For each graph that provides an original function y = f(x) in Figure 1.4.5, your task
is to sketch an approximate graph of its derivative function, y = f’(x), on the axes
immediately below. View the scale of the grid for the graph of f as being 1 X 1, and
assume the horizontal scale of the grid for the graph of f’ is identical to that for f. If
you need to adjust the vertical scale on the axes for the graph of f’, you should label
that accordingly.
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Figure 1.4.5: Graphs of y = f(x) and grids for plotting the corresponding graph of
y=f.
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1.5 Interpreting, estimating, and using the derivative

Motivating Questions

In contexts other than the position of a moving object, what does the derivative of a
function measure?

What are the units on the derivative function f’, and how are they related to the units
of the original function f?

What is a central difference, and how can one be used to estimate the value of the
derivative at a point from given function data?

Given the value of the derivative of a function at a point, what can we infer about
how the value of the function changes nearby?

It is a powerful feature of mathematics that it can be studied both as abstract discipline and
as an applied one. For instance, calculus can be developed almost entirely as an abstract col-
lection of ideas that focus on properties of functions. At the same time, if we consider func-
tions that represent meaningful processes, calculus can describe our experience of physical
reality. We have already seen that for the position function y = s(t) of a ball being tossed
straight up in the air, the derivative of the position function, v(t) = s’(f), gives the ball’s
velocity at time ¢.

In this section, we investigate several functions with specific physical meaning, and consider
how the units on the independent variable, dependent variable, and the derivative function
add to our understanding. To start, we consider the familiar problem of a position function
of a moving object.

Preview Activity 1.5.1. One of the longest stretches of straight (and flat) road in North
America can be found on the Great Plains in the state of North Dakota on state high-
way 46, which lies just south of the interstate highway I-94 and runs through the town
of Gackle. A car leaves town (at time ¢ = 0) and heads east on highway 46; its posi-
tion in miles from Gackle at time ¢ in minutes is given by the graph of the function in
Figure 1.5.1. Three important points are labeled on the graph; where the curve looks
linear, assume that it is indeed a straight line.

a. In everyday language, describe the behavior of the car over the provided time
interval. In particular, discuss what is happening on the time intervals [57, 68]
and [68, 104].

b. Find the slope of the line between the points (57, 63.8) and (104, 106.8). What

are the units on this slope? What does the slope represent?

c. Find the average rate of change of the car’s position on the interval [68, 104].
Include units on your answer.

d. Estimate the instantaneous rate of change of the car’s position at the moment

t = 80. Write a sentence to explain your reasoning and the meaning of this
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value.
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Figure 1.5.1: The graph of y = s(t), the position of the car along highway 46, which
tells its distance in miles from Gackle, ND, at time { in minutes.

1.5.1 Units of the derivative function

As we now know, the derivative of the function f at a fixed value x is given by

)= /)

f(x) = lim

and this value has several different interpretations. If we set x = 4, one meaning of f’(a) is
the slope of the tangent line at the point (a, f(a)).

We also sometimes write % or Z—Z instead of f’(x), and these alternate notations help us see

the units (and thus the meaning) of the derivative as the instantaneous rate of change of f with

respect to x. The units on the slope of the secant line, W, are “units of y per unit of
x,” and when we take the limit as & goes to zero, the derivative f’(x) has the same units:
units of y per unit of x. It is helpful to remember that the units on the derivative function
are “units of output per unit of input,” for the variables of the original function.

For example, suppose that the function y = P(f) measures the population of a city (in
thousands) at the start of year t (where t = 0 corresponds to 2010 AD). We are told that
P’(2) = 21.37. What is the meaning of this value? Well, since P is measured in thousands
and t is measured in years, we can say that the instantaneous rate of change of the city’s
population with respect to time at the start of 2012 is 21.37 thousand people per year. We
therefore expect that in the coming year, about 21,370 people will be added to the city’s
population.
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1.5 Interpreting, estimating, and using the derivative

1.5.2 Toward more accurate derivative estimates

Recall that to estimate the value of f’(x) ata given x, we calculate a difference quotient w
with a relatively small value of h. We should use both positive and negative values of / in
order to account for the behavior of the function on both sides of the point of interest. To
that end, we introduce the notion of a central difference and its role in estimating derivatives.

Example 1.5.2 Suppose that y = f(x) is a function for which three values are known: f(1) =
2.5, f(2) = 3.25, and f(3) = 3.625. Estimate f’(2).

Solution. We know that f’(2) = limj_ w But since we don’t have a graph or a
formula for the function, we can neither sketch a tangent line nor evaluate the limit alge-
braically. We can’t even use smaller and smaller values of I to estimate the limit. Instead,
we have just two choices: using h = -1 or h = 1, depending on which point we pair with
(2,3.25).

So, one estimate is

=0.75.

s L f) = f(2)  25-3.25
fO~=——F—=""7

The other is
fB) - f(2) 3.625-3.25

Sy = = 0375,

f@=

Because the first approximation looks backward from the point (2, 3.25) and the second ap-
proximation looks forward, it makes sense to average these two estimates in order to account
for behavior on both sides of x = 2. Doing so, we find that

0.75 +0.375
f'(2) = — = 0.5625.
The intuitive approach to average the two estimates found in Example 1.5.2 is in fact the
best possible way estimate to a derivative when we have just two function values for f on
opposite sides of the point of interest.

To see why, we think about the diagram in Figure 1.5.3. On the left, we see the two secant
lines with slopes that come from computing the backward difference % = (.75 and from

the forward difference % = 0.375. Note how the first slope over-estimates the slope of
the tangent line at (2, f(2)), while the second slope underestimates f’(2). On the right, we
see the secant line whose slope is given by the central difference

fB)-f(1) 3.625-25 1125
T =5 =5 =0.5625.

Note that this central difference has the same value as the average of the forward and back-
ward differences (and it is straightforward to explain why this always holds). The central
difference yields a very good approximation to the derivative’s value, because it yields a line
closer to being parallel to the tangent line.
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7 7
/ 1 2 3 / 1 2 3

Figure 1.5.3: At left, the graph of y = f(x) along with the secant line through (1,2.5) and
(2,3.25), the secant line through (2, 3.25) and (3, 3.625), as well as the tangent line. At right,

the same graph along with the secant line through (1,2.5) and (3, 3.625), plus the tangent
line.

The central difference approximation to the value of the first derivative is given by

o fa+l) - fla—h)
fa)~ — .

This quantity measures the slope of the secantline to y = f(x) through the points (a—h, f(a—
h))and (a + h, f(a + h)).

Activity 1.5.2. A potato is placed in an oven, and the potato’s temperature F (in de-
grees Fahrenheit) at various points in time is taken and recorded in the following
table. Time t is measured in minutes.

t 0 15 30 45 60 75 90
F(t) 70 180.5 251 296 3245 342.8 3545

Table 1.5.4: Temperature data in degrees Fahrenheit.

a. Use a central difference to estimate the instantaneous rate of change of the tem-
perature of the potato at t = 30. Include units on your answer.

b. Use a central difference to estimate the instantaneous rate of change of the tem-
perature of the potato at t = 60. Include units on your answer.

c. Without doing any calculation, which do you expect to be greater: F’(75) or
F’(90)? Why?

d. Suppose it is given that F(64) = 330.28 and F’(64) = 1.341. What are the units
on these two quantities? What do you expect the temperature of the potato to
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be when t = 65? when t = 66? Why?

e. Write a couple of careful sentences that describe the behavior of the temper-
ature of the potato on the time interval [0,90], as well as the behavior of the
instantaneous rate of change of the temperature of the potato on the same time
interval.

Activity 1.5.3. A company manufactures rope, and the total cost of producing r feet
of rope is C(r) dollars.

a. What does it mean to say that C(2000) = 800?
b. What are the units of C’(r)?

c. Suppose that C(2000) = 800 and C’(2000) = 0.35. Estimate C(2100), and justify
your estimate by writing at least one sentence that explains your thinking.

d. Do you think C’(2000) is less than, equal to, or greater than C’(3000)? Why?

e. Suppose someone claims that C’(5000) = —0.1. What would the practical mean-
ing of this derivative value tell you about the approximate cost of the next foot
of rope? Is this possible? Why or why not?

Activity 1.5.4. Researchers at a major car company have found a function that relates
gasoline consumption to speed for a particular model of car. In particular, they have
determined that the consumption C, in liters per kilometer, at a given speed s, is given
by a function C = f(s), where s is the car’s speed in kilometers per hour.

a. Data provided by the car company tells us that f(80) = 0.015, f(90) = 0.02,
and f(100) = 0.027. Use this information to estimate the instantaneous rate of
change of fuel consumption with respect to speed at s = 90. Be as accurate as
possible, use proper notation, and include units on your answer.

b. By writing a complete sentence, interpret the meaning (in the context of fuel
consumption) of “f(80) = 0.015.”

c. Write at least one complete sentence that interprets the meaning of the value of
£7(90) that you estimated in (a).

In Section 1.4, we learned how use to the graph of a given function f to plot the graph
of its derivative, f’. It is important to remember that when we do so, the scale and the
units on the vertical axis often have to change to represent f’. For example, suppose that
P(t) = 400 — 330e %% tells us the temperature in degrees Fahrenheit of a potato in an oven
at time ¢ in minutes. In Figure 1.5.5, we sketch the graph of P on the left and the graph of P’
on the right.

Notice that the vertical scales are different in size and different in units, as the units of P are
°F, while those of P’ are °F/min.
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Figure 1.5.5: Plot of P(t) = 400 — 330e "% at left, and its derivative P’(t) at right.

1.5.3 Summary

¢ The derivative of a given function y = f(x) measures the instantaneous rate of change
of the output variable with respect to the input variable.

¢ The units on the derivative function y = f’(x) are units of y per unit of x. Again, this
measures how fast the output of the function f changes when the input of the function
changes.

¢ The central difference approximation to the value of the first derivative is given by

fla+h)=fla=t)

fla)= 2

This quantity measures the slope of the secant line to y = f(x) through the points (a -
h, f(a—h))and (a+h, f(a+h)). The central difference generates a good approximation
of the derivative’s value.

1.5.4 Exercises

-4 1. A cooling cup of coffee. The temperature, H, in degrees Celsius, of a cup of coffee
Heatork placed on the kitchen counter is given by H = f(t), where f is in minutes since the
coffee was put on the counter.

(a) Is f'(t) positive or negative? (Be sure that you are able to give a reason for your answer.)

(b) What are the units of f/(35)?
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Suppose that | f'(35)| = 1.5 and f(35) = 68. Fill in the blanks (including units where
needed) and select the appropriate terms to complete the following statement about
the temperature of the coffee in this case.

At__minutes after the coffee was put on the counter, its (O derivative O temperature

O change in temperature) is and will (Oincrease 0O decrease)

by about in the next 30 seconds.

A cost function. The cost, C (in dollars) to produce g gallons of ice cream can be ex-
pressed as C = f(g). weawork

(a) In the expression f(100) = 250, what are the units of 100? What are the units of 250?
(b) In the expression f’(100) = 1.2, what are the units of 100? What are the units of 1.2?

(Be sure that you can carefully put into words the meanings of each of these statement in terms
of ice cream and money.)

Weight as a function of calories. A laboratory study investigating the relationship B8
between diet and weight in adult humans found that the weight of a subject, W, in "=~
pounds, was a function, W = f(c), of the average number of Calories, ¢, consumed by

the subject in a day.

(a) In the statement f(1600) = 165 what are the units of 1600? What are the units of
165?

(Think about what this statement means in terms of the weight of the subject and the number of
calories that the subject consumes.)

(b) In the statement f’(2000) = 0, what are the units of 2000? What are the units of 0?

(Think about what this statement means in terms of the weight of the subject and the number of
calories that the subject consumes.)

(c) In the statement f~1(173) = 2400, what are the units of 173? What are the units of
2400?

(Think about what this statement means in terms of the weight of the subject and the number of
calories that the subject consumes.)

(d) What are the units of f’(c) = dW/dc?

(e) Suppose that Sam reads about f’ in this study and draws the following conclusion:
If Sam increases her average calorie intake from 2800 to 2840 calories per day, then her
weight will increase by approximately 0.8 pounds.

Fill in the blanks below so that the equation supports her conclusion.
g )=

Displacement and velocity. The displacement (in meters) of a particle moving in a
straight line is given by s = t2 — 5t + 16, where t is measured in seconds. esione

(A)

(i) Find the average velocity over the time interval [3,4].
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52

(ii) Find the average velocity over the time interval [3.54].
(iif) Find the average velocity over the time interval [4,5].
(iv) Find the average velocity over the time interval [4,4.5].

(B) Find the instantaneous velocity when ¢ = 4.

A cup of coffee has its temperature F (in degrees Fahrenheit) at time f given by the
function F(t) = 75 + 110e 9%, where time is measured in minutes.

a. Use a central difference with & = 0.01 to estimate the value of F/(10).

b. What are the units on the value of F’(10) that you computed in (a)? What is the
practical meaning of the value of F/(10)?

¢. Which do you expect to be greater: F/(10) or F’(20)? Why?
d. Write a sentence that describes the behavior of the function y = F’(¢) on the time
interval 0 < t < 30. How do you think its graph will look? Why?

The temperature change T (in Fahrenheit degrees), in a patient, that is generated by a
dose g (in milliliters), of a drug, is given by the function T = f(g).
a. What does it mean to say f(50) = 0.75? Write a complete sentence to explain,
using correct units.

b. A person’s sensitivity, s, to the drug is defined by the function s(g) = f’(g). What
are the units of sensitivity?

c. Suppose that f/(50) = —0.02. Write a complete sentence to explain the meaning
of this value. Include in your response the information given in (a).

The velocity of a ball that has been tossed vertically in the air is given by v(t) = 16 -32t,
where v is measured in feet per second, and ¢ is measured in seconds. The ball is in the
air from t = Q0 until ¢ = 2.

a. When is the ball’s velocity greatest?
b. Determine the value of v’(1). Justify your thinking.

¢. What are the units on the value of v’(1)? What does this value and the corre-
sponding units tell you about the behavior of the ball at time ¢ = 1?
d. What is the physical meaning of the function v’(t)?

The value, V, of a particular automobile (in dollars) depends on the number of miles,
m, the car has been driven, according to the function V = h(m).

a. Suppose that #(40000) = 15500 and /(55000) = 13200. What is the average rate of
change of & on the interval [40000, 55000], and what are the units on this value?

b. In addition to the information given in (a), say that #(70000) = 11100. Deter-
mine the best possible estimate of /1'(55000) and write one sentence to explain the
meaning of your result, including units on your answer.

c. Which value do you expect to be greater: h’(30000) or 4’(80000)? Why?

d. Write a sentence to describe the long-term behavior of the function V = h(m),



1.5 Interpreting, estimating, and using the derivative
plus another sentence to describe the long-term behavior of h’(m). Provide your

discussion in practical terms regarding the value of the car and the rate at which
that value is changing.
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1.6 The second derivative

Motivating Questions

* How does the derivative of a function tell us whether the function is increasing or
decreasing on an interval?

e What can we learn by taking the derivative of the derivative (the second derivative)
of a function f?

* What does it mean to say that a function is concave up or concave down? How are
these characteristics connected to certain properties of the derivative of the function?

* What are the units of the second derivative? How do they help us understand the
rate of change of the rate of change?

Given a differentiable function y = f(x), we know that its derivative, y = f’(x), is a related
function whose output at x = a tells us the slope of the tangent line to y = f(x) at the point
(a, f(a)). That is, heights on the derivative graph tell us the values of slopes on the original
function’s graph.

At a point where f’(x) is positive, the slope of the tangent line to f is positive. Therefore, on
an interval where f’(x) is positive, the function f is increasing (or rising). Similarly, if f’(x)
is negative on an interval, the graph of f is decreasing (or falling).

The derivative of f tells us not only whether the
function f is increasing or decreasing on an inter-
val, but also how the function f is increasing or
decreasing. Look at the two tangent lines shown
in Figure 1.6.1. We see that near point A the value
of f’(x)is positive and relatively close to zero, and
near that point the graph is rising slowly. By con-
trast, near point B, the derivative is negative and
relatively large in absolute value, and f is decreas- A
ing rapidly near B. B

Besides asking whether the value of the deriva-
tive function is positive or negative and whether
it is large or small, we can also ask “how is the
derivative changing?”

Because the derivative, y = f’(x), is itself a func-
tion, we can consider taking its derivative — the
derivative of the derivative — and ask “what does
the derivative of the derivative tell us about how
the original function behaves?” We start with an
investigation of a moving object.

Figure 1.6.1: Two tangent lines on a
graph.
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1.6 The second derivative

Preview Activity 1.6.1. The position of a car driving along a straight road at time ¢
in minutes is given by the function y = s(t) that is pictured in Figure 1.6.2. The car’s
position function has units measured in thousands of feet. For instance, the point
(2,4) on the graph indicates that after 2 minutes, the car has traveled 4000 feet.

y K
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Figure 1.6.2: The graph of y = s(t), the position of the car (measured in thousands of
feet from its starting location) at time ¢ in minutes.

a. In everyday language, describe the behavior of the car over the provided time
interval. In particular, you should carefully discuss what is happening on each
of the time intervals [0, 1], [1, 2], [2, 3], [3, 4], and [4, 5], plus provide commen-
tary overall on what the car is doing on the interval [0, 12].

b. On the lefthand axes provided in Figure 1.6.3, sketch a careful, accurate graph
of y =s'(t).

c. What is the meaning of the function y = s’(¢) in the context of the given prob-
lem? What can we say about the car’s behavior when s’(t) is positive? when
s’(t) is zero? when s’(t) is negative?

d. Rename the function you graphed in (b) to be called y = v(t). Describe the
behavior of v in words, using phrases like “v is increasing on the interval ...”
and “v is constant on the interval ....”

e. Sketch a graph of the function y = v’(¢) on the righthand axes provide in Fig-
ure 1.6.3. Write at least one sentence to explain how the behavior of v’(t) is
connected to the graph of y = v(t).
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Figure 1.6.3: Axes for plotting y = v(t) = s’(t) and y = v’(t).

1.6.1 Increasing or decreasing

So far, we have used the words increasing and decreasing intuitively to describe a function’s
graph. Here we define these terms more formally.

Definition 1.6.4 Given a function f(x) defined on the interval (a,b), we say that f is in-
creasing on (a, b) provided that for all x, y in the interval (4, b), if x < y, then f(x) < f(y).
Similarly, we say that f is decreasing on (a, b) provided that for all x, y in the interval (a, b),

if x < y, then f(x) > f(y).

Simply put, an increasing function is one that is rising as we move from left to right along
the graph, and a decreasing function is one that falls as the value of the input increases.
If the function has a derivative, the sign of the derivative tells us whether the function is
increasing or decreasing.

Let f be a function that is differentiable on an interval (a, b). It is possible to show that that if
f'(x) > 0 for every x such thata < x < b, then f is increasing on (a, b); similarly, if f’(x) <0
on (a,b), then f is decreasing on (a, b).

For example, the function pictured in Figure 1.6.5 is increasing on the entire interval -2 <
x < 0, and decreasing on the interval 0 < x < 2. Note that the value x = 0 is not included in
either interval since at this location, the function is changing from increasing to decreasing.
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1.6 The second derivative

Figure 1.6.5: A function that is decreasing on the intervals -3 < x < =2and 0 < x < 2 and
increasingon -2 < x <0and 2 < x < 3.

1.6.2 The Second Derivative

We are now accustomed to investigating the behavior of a function by examining its deriv-
ative. The derivative of a function f is a new function given by the rule

) = tm SO =1

Because f is itself a function, it is perfectly feasible for us to consider the derivative of the
derivative, which is the new function y = [f’(x)]’. We call this resulting function the second
derivative of y = f(x), and denote the second derivative by y = f”(x). Consequently, we will
sometimes call f” “the first derivative” of f, rather than simply “the derivative” of f.

Definition 1.6.6 The second derivative is defined by the limit definition of the derivative of
the first derivative. That is,

f'x+h) - f'(x)
- :

1”7 :1-
f7(0) = lim

The meaning of the derivative function still holds, so when we compute y = f”(x), this new
function measures slopes of tangent lines to the curve y = f’(x), as well as the instantaneous
rate of change of y = f’(x). In other words, just as the first derivative measures the rate at
which the original function changes, the second derivative measures the rate at which the
first derivative changes. The second derivative will help us understand how the rate of
change of the original function is itself changing.
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1.6.3 Concavity

In addition to asking whether a function is increasing or decreasing, it is also natural to in-
quire how a function is increasing or decreasing. There are three basic behaviors that an
increasing function can demonstrate on an interval, as pictured in Figure 1.6.7: the function
can increase more and more rapidly, it can increase at the same rate, or it can increase in
a way that is slowing down. Fundamentally, we are beginning to think about how a par-
ticular curve bends, with the natural comparison being made to lines, which don’t bend at
all. More than this, we want to understand how the bend in a function’s graph is tied to
behavior characterized by the first derivative of the function.

Figure 1.6.7: Three functions that are all increasing, but doing so at an increasing rate, at a
constant rate, and at a decreasing rate, respectively.

On the leftmost curve in Figure 1.6.7, draw a sequence of tangent lines to the curve. As we
move from left to right, the slopes of those tangent lines will increase. Therefore, the rate
of change of the pictured function is increasing, and this explains why we say this function
is increasing at an increasing rate. For the rightmost graph in Figure 1.6.7, observe that as x
increases, the function increases, but the slopes of the tangent lines decrease. This function
is increasing at a decreasing rate.

Similar options hold for how a function can decrease. Here we must be extra careful with our
language, because decreasing functions involve negative slopes. Negative numbers present
an interesting tension between common language and mathematical language. For example,
it can be tempting to say that “~100 is bigger than —2.” But we must remember that “greater
than” describes how numbers lie on a number line: x > y provided that x lies to the right
of y. So of course, —100 is less than —2. Informally, it might be helpful to say that “—~100 is
more negative than —2.” When a function’s values are negative, and those values get more
negative as the input increases, the function must be decreasing. Now consider the three
graphs shown in Figure 1.6.8. Clearly the middle graph depicts a function decreasing at a
constant rate. Now, on the first curve, draw a sequence of tangent lines. We see that the
slopes of these lines get less and less negative as we move from left to right. That means that
the values of the first derivative, while all negative, are increasing, and thus we say that the
leftmost curve is decreasing at an increasing rate.

This leaves only the rightmost curve in Figure 1.6.8 to consider. For that function, the slopes
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1.6 The second derivative

Figure 1.6.8: From left to right, three functions that are all decreasing, but doing so in
different ways.

of the tangent lines are negative throughout the pictured interval, but as we move from left
to right, the slopes get more and more negative. Hence the slope of the curve is decreasing,
and we say that the function is decreasing at a decreasing rate.

We now introduce the notion of concavity which provides simpler language to describe these
behaviors. When a curve opens upward on a given interval, like the parabola y = x2 or the
exponential growth function y = e*, we say that the curve is concave up on that interval.
Likewise, when a curve opens down, like the parabola y = —x? or the opposite of the ex-
ponential function y = —e¥, we say that the function is concave down. Concavity is linked to
both the first and second derivatives of the function.

Figure 1.6.9: At left, a function that is concave up; at right, one that is concave down.

In Figure 1.6.9, we see two functions and a sequence of tangent lines to each. On the lefthand
plot, where the function is concave up, observe that the tangent lines always lie below the
curve itself, and the slopes of the tangent lines are increasing as we move from left to right.
In other words, the function f is concave up on the interval shown because its derivative,
f’, is increasing on that interval. Similarly, on the righthand plot in Figure 1.6.9, where the
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function shown is concave down, we see that the tangent lines alway lie above the curve,
and the slopes of the tangent lines are decreasing as we move from left to right. The fact that
its derivative, f’, is decreasing makes f concave down on the interval.

We state these most recent observations formally as the definitions of the terms concave up
and concave down.

Definition 1.6.10 Let f be a differentiable function on an interval (4, b). Then f is concave
up on (a,b) if and only if f’ is increasing on (4, b); f is concave down on (g, b) if and only if
f’ is decreasing on (a, b).

Activity 1.6.2. The position of a car driving along a straight road at time ¢ in minutes
is given by the function y = s(t) that is pictured in Figure 1.6.11. The car’s position
function has units measured in thousands of feet. Remember that you worked with
this function and sketched graphs of y = v(t) = s’(t) and y = v’(t) in Preview Activ-
ity 1.6.1.
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Figure 1.6.11: The graph of y = s(t), the position of the car (measured in thousands
of feet from its starting location) at time ¢ in minutes.

a. On what intervals is the position function y = s(t) increasing? decreasing?
Why?

b. On which intervals is the velocity function y = v(t) = s’(t) increasing? decreas-
ing? neither? Why?

c. Acceleration is defined to be the instantaneous rate of change of velocity, as the
acceleration of an object measures the rate at which the velocity of the object is
changing. Say that the car’s acceleration function is named a(t). How is a(t)
computed from v(t)? How is a(t) computed from s(¢)? Explain.

d. What can you say about s”” whenever s’ is increasing? Why?
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1.6 The second derivative

e. Using only the words increasing, decreasing, constant, concave up, concave down,
and linear, complete the following sentences. For the position function s with
velocity v and acceleration 4,

* on an interval where v is positive, s is

* on an interval where v is negative, s is
* on an interval where v is zero, s is

* on an interval where a is positive, v is
* on an interval where 4 is negative, v is
¢ on an interval where a is zero, v is

* on an interval where 4 is positive, s is

* on an interval where 7 is negative, s is

¢ on an interval where a is zero, s is

Exploring the context of position, velocity, and acceleration is an excellent way to understand
how a function, its first derivative, and its second derivative are related to one another. In
Activity 1.6.2, we can replace s, v, and a with an arbitrary function f and its derivatives f’
and f”, and essentially all the same observations hold. In particular, note that the following
are equivalent: on an interval where the graph of f is concave up, f’ is increasing and f”
is positive. Likewise, on an interval where the graph of f is concave down, f” is decreasing
and f” is negative.

Activity 1.6.3. A potato is placed in an oven, and the potato’s temperature F (in de-
grees Fahrenheit) at various points in time is taken and recorded in the following
table. Time t is measured in minutes. In Activity 1.5.2, we computed approximations
to F/(30) and F’(60) using central differences. Those values and more are provided in
the second table below, along with several others computed in the same way.

t F(t) £ F(t)
0 70 0 NA

15 180.5 15 6.03
30 251 30 3.85
45 296 45 245
60 3245 60 1.56
75 342.8 75 1.00
90 354.5 90 NA

Table 1.6.12: Select values of F(t). Table 1.6.13: Select values of F’(t).

a. What are the units on the values of F’(¢)?
b. Use a central difference to estimate the value of F”(30).

c. What is the meaning of the value of F”(30) that you have computed in (b) in
terms of the potato’s temperature? Write several careful sentences that discuss,
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with appropriate units, the values of F(30), F’(30), and F”(30), and explain the
overall behavior of the potato’s temperature at this point in time.

d. Overall, is the potato’s temperature increasing at an increasing rate, increasing
at a constant rate, or increasing at a decreasing rate? Why?

Activity 1.6.4. This activity builds on our experience and understanding of how to
sketch the graph of f’ given the graph of f.

In Figure 1.6.14, given the respective graphs of two different functions f, sketch the
corresponding graph of f” on the first axes below, and then sketch f” on the second
set of axes. In addition, for each, write several careful sentences in the spirit of those
in Activity 1.6.2 that connect the behaviors of f, f’, and f”. For instance, write some-
thing such as

f'is on the interval , which is connected to the fact that f
is on the same interval and f” is on the interval.

but of course with the blanks filled in. Throughout, view the scale of the grid for the
graph of f as being 1 x 1, and assume the horizontal scale of the grid for the graph of
f’ is identical to that for f. If you need to adjust the vertical scale on the axes for the
graph of f’ or f”, you should label that accordingly.

1.6.4 Summary
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A differentiable function f is increasing on an interval whenever its first derivative is
positive, and decreasing whenever its first derivative is negative.

By taking the derivative of the derivative of a function f, we arrive at the second deriv-
ative, f”. The second derivative measures the instantaneous rate of change of the first
derivative. The sign of the second derivative tells us whether the slope of the tangent
line to f is increasing or decreasing.

A differentiable function is concave up whenever its first derivative is increasing (or
equivalently whenever its second derivative is positive), and concave down whenever
its first derivative is decreasing (or equivalently whenever its second derivative is neg-
ative). Examples of functions that are everywhere concave up are y = x> and y = e%;
examples of functions that are everywhere concave down are y = —x% and y = —¢*.

The units on the second derivative are “units of output per unit of input per unit of
input.” They tell us how the value of the derivative function is changing in response to
changes in the input. In other words, the second derivative tells us the rate of change
of the rate of change of the original function.
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N SENSUVAVIR VAT

f !

fl/ f//

Figure 1.6.14: Two given functions f, with axes provided for plotting f” and f” below.
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Chapter 1 Understanding the Derivative
1.6.5 Exercises

1. Comparing f, f’, f” values. Consider the function f(x) graphed below.

WeBWork

For this function, are the following
nonzero quantities positive or negative?

£(05), £(0.5), £7(0.5)

A

2. Signsof f, f’, f” values. At exactly two of the labeled points in the figure below, which
eakert shows a function f, the derivative f’ is zero; the second derivative f” is not zero at any
of the labeled points. Give the sign for each of f, f” and f” at each marked point.

¥<q 3.  Acceleration from velocity. Suppose that an accelerating car goes from 0 mph to 64.1

veatert mph in five seconds. Its velocity is given in the following table, converted from miles
per hour to feet per second, so that all time measurements are in seconds. (Note: 1
mph is 22/15 ft/sec.) Find the average acceleration of the car over each of the first two
seconds.

t(s) 0 1 2 3 4 5
v(t) (ft/s) | 0.00 | 32.05 | 55.55 | 72.64 | 85.45 | 94.00

average acceleration over the first second =

average acceleration over the second second =
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1.6 The second derivative

Rates of change of stock values. Let P(t) represent the price of a share of stock of a 8
corporation at time . What does each of the following statements tell us about the ***
signs of the first and second derivatives of P(t)?

(a) The price of the stock is falling slower and slower.

The first derivative of P(t)is (O positive Ozero O negative)
The second derivative of P(t)is (O positive O zero O negative)
(b) The price of the stock is close to bottoming out.

The first derivative of P(t)is (O positive Ozero O negative)
The second derivative of P(t)is (O positive O zero O negative)

Interpreting a graph of f’. The graph of f’ (not f) is given below.

(Note that this is a graph of f', not a graph
of £.)

At which of the marked values of x is
A. f(x) greatest?

B. f(x) least?

C. f'(x) greatest?

D. f’(x) least?

E. f”(x) greatest?

E. f”(x) least?

w1 ®2? =3 x4 KO =6

Suppose that y = f(x) is a twice-differentiable function such that f” is continuous for
which the following information is known: f(2) = -3, f(2) = 1.5, f”(2) = —0.25.

a. Is f increasing or decreasing near x = 2? Is f concave up or concave down near
x=2?

b. Do you expect f(2.1) to be greater than —3, equal to -3, or less than —3? Why?
c. Do you expect f’(2.1) to be greater than 1.5, equal to 1.5, or less than 1.5? Why?
d. Sketch a graph of y = f(x) near (2, f(2)) and include a graph of the tangent line.
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7.  For a certain function y = g(x), its derivative is given by the function pictured in Fig-
ure 1.6.15.

y=2g(x)

Figure 1.6.15: The graph of y = g’(x).

a. Whatis the approximate slope of the tangent line to y = g(x) at the point (2, g(2))?

b. How many real number solutions can there be to the equation g(x) = 0? Justify
your conclusion fully and carefully by explaining what you know about how the
graph of g must behave based on the given graph of g’.

c. On the interval -3 < x < 3, how many times does the concavity of g change?
Why?
d. Use the provided graph to estimate the value of g”(2).
8. A bungee jumper’s height / (in feet ) at time f (in seconds) is given in part by the table:

t 0.0 05 1.0 1.5 2.0 25 30 35 40 45 50
h(t) 200 184.2 1599 1319 104.7 81.8 655 56.8 555 604 69.8

t 55 6.0 65 7.0 7.5 8.0 8.5 9.0 9.5 10.0
h(t) 81.6 93.7 1044 1126 117.7 1194 1182 114.8 110.0 104.7

a. Use the given data to estimate h’(4.5), h'(5), and h’(5.5). At which of these times
is the bungee jumper rising most rapidly?

b. Use the given data and your work in (a) to estimate 1”(5).

c. What physical property of the bungee jumper does the value of 1”(5) measure?
What are its units?

d. Based on the data, on what approximate time intervals is the function y = h(t)
concave down? What is happening to the velocity of the bungee jumper on these
time intervals?
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1.6 The second derivative

For each prompt that follows, sketch a possible graph of a function on the interval
—3 < x < 3 that satisfies the stated properties.

a. y = f(x) such that f is increasing on -3 < x < 3, concave up on -3 < x < 0, and
concave downon 0 < x < 3.

b. ¥ = g(x) such that g is increasing on -3 < x < 3, concave down on -3 < x < 0,
and concave up on 0 < x < 3.

c. y = h(x) such that h is decreasing on -3 < x < 3, concave up on -3 < x < -1,
neither concave up nor concave down on —1 < x < 1, and concave down on
1<x<3.

d. ¥ = p(x) such that p is decreasing and concave down on -3 < x < 0 and is
increasing and concave down on 0 < x < 3.
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1.7 Limits, Continuity, and Differentiability

Motivating Questions

What does it mean graphically to say that f has limit L as x — 4? How is this con-
nected to having a left-hand limit at x = a and having a right-hand limit at x = a?

What does it mean to say that a function f is continuous at x = a? What role do limits
play in determining whether or not a function is continuous at a point?

What does it mean graphically to say that a function f is differentiable at x = a? How
is this connected to the function being locally linear?

How are the characteristics of a function having a limit, being continuous, and being
differentiable at a given point related to one another?

In Section 1.2, we learned how limits can be used to study the trend of a function near a
fixed input value. In this section, we aim to quantify how the function acts and how its
values change near a particular point. If the function has a limit L at x = a, we will consider
how the value of the function f(a) is related to lim,_,, f(x), and whether or not the function
has a derivative f’(a) at x = a.

68

Preview Activity 1.7.1. A function f defined on —4 < x < 4 is given by the graph in
Figure 1.7.1. Use the graph to answer each of the following questions. Note: to the
right of x = 2, the graph of f is exhibiting infinite oscillatory behavior similar to the
function sin(Z) that we encountered in the key example early in Section 1.2.

f

N W

Figure 1.7.1: The graph of y = f(x).

a. Foreachofthevaluesa = -3,-2,-1,0,1, 2, 3, determine whether or not lim f(x)
X—a

exists. If the function has a limit L at a given point, state the value of the limit
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using the notation lim,_,, f(x) = L. If the function does not have a limit at a
given point, write a sentence to explain why.

b. For each of the values of a from part (a) where f has a limit, determine the value
of f(a) at each such point. In addition, for each such a value, does f(a) have the
same value as lim,_,, f(x)?

c. For each of the values a = -3,-2,-1,0,1, 2,3, determine whether or not f’(a)
exists. In particular, based on the given graph, ask yourself if it is reasonable
to say that f has a tangent line at (a, f(a)) for each of the given a-values. If so,
visually estimate the slope of the tangent line to find the value of f’(a).

1.7.1 Having a limit at a point

In Section 1.2, we learned that f has limit L as x approaches a provided that we can make
the value of f(x) as close to L as we like by taking x sufficiently close (but not equal to) a. If
so, we write lim,_,, f(x) = L.

Essentially there are two behaviors that a function can exhibit near a point where it fails to
have a limit. In Figure 1.7.3, at left we see a function f whose graph shows a jump ata = 1.
If we let x approach 1 from the left side, the value of f approaches 2, but if we let x approach
1 from the right, the value of f tends to 3. Because the value of f does not approach a single
number as x gets arbitrarily close to 1 from both sides, we know that f does not have a limit
ata=1.

For such cases, we introduce the notion of left and right (or one-sided) limits.
Definition 1.7.2 We say that f has limit L1 as x approaches a from the left and write
Jim ) =1y

provided that we can make the value of f(x) as close to L; as we like by taking x sufficiently
close to a while always having x < a. We call L; the left-hand limit of f as x approaches a.
Similarly, we say L, is the right-hand limit of f as x approaches a and write

lim f(x) =Ly
x—at

provided that we can make the value of f(x) as close to L, as we like by taking x sufficiently
close to a while always having x > a.

In the graph of the function f in Figure 1.7.3, we see that
lim f(x) =2 and lim f(x)=3.
x—1- x—1*

Precisely because the left and right limits are not equal, the overall limit of f as x — 1 fails
to exist.
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Figure 1.7.3: Functions f and g that each fail to have a limit ata = 1.

For the function g pictured at right in Figure 1.7.3, the function fails to have a limitata = 1
for a different reason. While the function does not have a jump in its graph ata = 1, it is
still not the case that g approaches a single value as x approaches 1. In particular, due to the
infinitely oscillating behavior of g to the right of 2 = 1, we say that the right-hand limit of g
as x — 1* does not exist, and thus lim,_,; g(x) does not exist.

To summarize, if either a left- or right-hand limit fails to exist or if the left- and right-hand
limits are not equal to each other, the overall limit does not exist.

A function f has limit L as x — a if and only if

xh_{?, f(x)=L= Xli_)r;l+ f(x).

That is, a function has a limit at x = a if and only if both the left- and right-hand limits at
x = a exist and have the same value.

In Preview Activity 1.7.1, the function f given in Figure 1.7.1 fails to have a limit at only two
values: at a = —2 (where the left- and right-hand limits are 2 and —1, respectively) and at
x =2, where lim,_,»+ f(x) does not exist). Note well that even at values such as a4 = —1 and
a = 0 where there are holes in the graph, the limit still exists.
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1.7 Limits, Continuity, and Differentiability

Activity 1.7.2. Consider a function that is piecewise-defined according to the formula

3(x+2)+2
Zx+2)+1
Zx+2)+1
2

4—-x

flx) =

for-3<x < -2
for2<x<-1
for-1<x<1
forx =1
forx > 1

Use the given formula to answer the following questions.

Figure 1.7.4: Axes for plotting the function y = f(x) in Activity 1.7.2.

a. For each of the valuesa = -2,-1,0, 1, 2, compute f(a).

b. For each of the valuesa = -2,-1,0, 1,2, determine lim f(x)and lim f(x).
x—a~ x—a*

c. For each of the valuesa = -2,-1,0, 1, 2, determine lim,_,, f(x). If the limit fails
to exist, explain why by discussing the left- and right-hand limits at the relevant

a-value.

d. For which values of a is the following statement true?

lim £(x) # £(a)

e. On the axes provided in Figure 1.7.4, sketch an accurate, labeled graph of y =
f(x). Be sure to carefully use open circles (o) and filled circles (o) to represent
key points on the graph, as dictated by the piecewise formula.
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1.7.2 Being continuous at a point
Intuitively, a function is continuous if we can draw its graph without ever lifting our pencil
from the page. Alternatively, we might say that the graph of a continuous function has no

jumps or holes in it. In Figure 1.7.5 we consider three functions that have a limitata = 1,
and use them to make the idea of continuity more precise.

/\/\/
N N

Figure 1.7.5: Functions f, g, and & that demonstrate subtly different behaviors at a = 1.

N

First consider the function in the left-most graph. Note that f(1) is not defined, which leads
to the resulting hole in the graph of f ata = 1. We will naturally say that f is not continuous
at a = 1. For the function g, we observe that while lim,_,; g(x) = 3, the value of g(1) = 2,
and thus the limit does not equal the function value. Here, too, we will say that g is not
continuous, even though the function is defined at @ = 1. Finally, the function & appears to
be the most well-behaved of all three, since at 4 = 1 its limit and its function value agree.
That is,
%:rr} h(x) =3 = h(1).

With no hole or jump in the graph of i at a = 1, we say that h is continuous there. More
formally, we make the following definition.

Definition 1.7.6 A function f is continuous at x = a provided that

a. f hasalimitasx — g,

b. f is defined at x = a, and
¢ limy,, f(x) = f(a).

Conditions (a) and (b) are technically contained implicitly in (c), but we state them explicitly
to emphasize their individual importance. The definition says that a function is continuous
at x = a provided that its limit as x — a exists and equals its function value at x = 4. Ifa
function is continuous at every point in an interval [a, b], we say the function is “continuous
on [a, b].” If a function is continuous at every point in its domain, we simply say the function
is “continuous.” Thus, continuous functions are particularly nice: to evaluate the limit of a
continuous function at a point, all we need to do is evaluate the function.

For example, consider p(x) = x2 — 2x + 3. It can be proved that every polynomial is a
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continuous function at every real number, and thus if we would like to know limy_,» p(x),
we simply compute

1in;(x2—2x+3)=22—2.2+3=3.

X—

This route of substituting an input value to evaluate a limit works whenever we know that
the function being considered is continuous. Besides polynomial functions, all exponential
functions and the sine and cosine functions are continuous at every point, as are many other
familiar functions and combinations thereof.

Activity 1.7.3. This activity builds on your work in Preview Activity 1.7.1, using the
same function f as given by the graph that is repeated in Figure 1.7.7.

N W

Figure 1.7.7: The graph of y = f(x) for Activity 1.7.3.

a. At which values of a does lim,_,, f(x) not exist?

b. At which values of a is f(a) not defined?

c. At which values of 2 does f have a limit, but lim,_,, f(x) # f(a)?
d. State all values of a for which f is not continuous at x = a.

e. Which condition is stronger, and hence implies the other: f has a limitat x = a
or f is continuous at x = 4? Explain, and hence complete the following sentence:
“If f atx = a, then f at x = a,” where you complete the blanks
with has a limit and is continuous, using each phrase once.

1.7.3 Being differentiable at a point

We recall that a function f is said to be differentiable at x = a if f’(a) exists. Moreover,
for f’(a) to exist, we know that the function y = f(x) must have a tangent line at the point
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(a, f(a)), since f’(a) is precisely the slope of this line. In order to even ask if f has a tangent
line at (a, f(a)), itis necessary that f be continuous at x = a: if f fails to have a limitatx = 4,
if f(a) is not defined, or if f(a) does not equal the value of lim,_,, f(x), then it doesn’t make
sense to talk about a tangent line to the curve at this point.

Indeed, it can be proved formally that if a function f is differentiable at x = a, then it must
be continuous at x = a. So, if f is not continuous at x = g, then it is automatically the
case that f is not differentiable there. For example, in Figure 1.7.5, both f and g fail to be
differentiable at x = 1 because neither function is continuous at x = 1. But can a function
fail to be differentiable at a point where the function is continuous?

In Figure 1.7.8, the function has a sharp corner at a point. For the pictured function f, we
observe that f is clearly continuous at a = 1, since lim,_,; f(x) =1 = f(1).

\ f

Figure 1.7.8: A function f that is continuous at 4 = 1 but not differentiable at 4 = 1; at right,
we zoom in on the point (1, 1) in a magnified version of the box in the left-hand plot.

But the function f in Figure 1.7.8 is not differentiable at 2 = 1 because f’(1) fails to exist.
One way to see this is to observe that f’(x) = —1 for every value of x that is less than 1, while
f'(x) = +1 for every value of x that is greater than 1. That makes it seem that either +1 or —1
would be equally good candidates for the value of the derivative at x = 1. Alternately, we
could use the limit definition of the derivative to attempt to compute f’(1), and discover that
the derivative does not exist. Finally, we can see visually that the function f in Figure 1.7.8
does not have a tangent line. When we zoom in on (1, 1) on the graph of f, no matter how
closely we examine the function, it will always look like a “V”, and never like a single line,
which tells us there is no possibility for a tangent line there.

If a function does have a tangent line at a given point, when we zoom in on the point of
tangency, the function and the tangent line should appear essentially indistinguishable!.
Conversely, if we zoom in on a point and the function looks like a single straight line, then
the function should have a tangent line there, and thus be differentiable. Hence, a function
that is differentiable at x = a will, up close, look more and more like its tangent line at
(a, f(a)). Therefore, we say that a function that is differentiable at x = a is locally linear.

To summarize the preceding discussion of differentiability and continuity, we make several

1See, for instance, http:/ /gvsu.edu/s/6] for an applet (due to David Austin, GVSU) where zooming in shows
the increasing similarity between the tangent line and the curve.
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important observations.

e

e If f is differentiable at x = 4, then f is continuous at x = a. Equivalently, if f
fails to be continuous at x = 4, then f will not be differentiable at x = a.

e A function can be continuous at a point, but not be differentiable there. In
particular, a function f is not differentiable at x = a if the graph has a sharp
corner (or cusp) at the point (a, f(a)).

e If f is differentiable at x = g, then f is locally linear at x = a. That is, when
a function is differentiable, it looks linear when viewed up close because it re-
sembles its tangent line there.

Activity 1.7.4. In this activity, we explore two different functions and classify the
points at which each is not differentiable. Let g be the function given by the rule
g(x) = |x|, and let f be the function that we have previously explored in Preview
Activity 1.7.1, whose graph is given again in Figure 1.7.9.

Figure 1.7.9: The graph of y = f(x) for Activity 1.7.4.

a. Reasoning visually, explain why g is differentiable at every point x such that
x #0.

b. Use the limit definition of the derivative to show that g’(0) = limj,_, %
c. Explain why g’(0) fails to exist by using small positive and negative values of h.

d. State all values of a for which f is not differentiable at x = a. For each, provide
a reason for your conclusion.

e. True or false: if a function p is differentiable at x = b, then lim,_,; p(x) must
exist. Why?
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1.7.4 Summary

* A function f has limit L as x — a if and only if f has a left-hand limit at x = 4, f has
a right-hand limit at x = g, and the left- and right-hand limits are equal. Visually, this
means that there can be a hole in the graph at x = a, but the function must approach
the same single value from either side of x = a.

e A function f is continuous at x = a whenever f(a) is defined, f has a limitas x — 4,
and the value of the limit and the value of the function agree. This guarantees that
there is not a hole or jump in the graph of f at x = a.

¢ A function f is differentiable at x = a whenever f’(a) exists, which means that f has
a tangent line at (a, f(a)) and thus f is locally linear at x = 4. Informally, this means
that the function looks like a line when viewed up close at (4, f(a)) and that there is
not a corner point or cusp at (a, f(a)).

e Of the three conditions discussed in this section (having a limit at x = a, being con-
tinuous at x = a, and being differentiable at x = a), the strongest condition is being
differentiable, and the next strongest is being continuous. In particular, if f is differ-
entiable at x = 4, then f is also continuous at x = a4, and if f is continuous at x = g4,
then f has a limit at x = a.

1.7.5 Exercises

<q 1. Limit values of a piecewise graph. Use the figure below, which gives a graph of the

WesWork function f(x), to give values for the indicated limits. If a limit does not exist, enter none.
p2 (a) xli_>n_11 f(x)
) ;lclg(l) f(x)
(c) ;lclg% f(x)
(d) chlg}l f(x)
2.8 T
3 LY 5
=12

Y<§ 2.  Limit values of a piecewise formula. For the function

‘WeBWork

3x -2, 0<x<1
f(x) =15, x=1
x2-2x+2, 1<x

use algebra to find each of the following limits:
lim_ f(x)

S
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lim f(x)
x—1
Sketch a graph of f(x) to confirm your answers.

Continuity and differentiability of a graph. Consider the function graphed below. 8

1 2 3 - | L [ r

At what x-values does the function appear to not be continuous?

At what x-values does the function appear to not be differentiable?

Continuity of a piecewise formula. Find k so that the following function is continuous: g
kx if 0<x<2
fx) = {

5x2 if 2 < «x.

Consider the graph of the function y = p(x) that is provided in Figure 1.7.10. Assume
that each portion of the graph of p is a straight line, as pictured.

a. State all values of a for which lim,_,, p(x) does not exist.
b. State all values of a for which p is not continuous at a.
c. State all values of a for which p is not differentiable at x = a.

d. On the axes provided in Figure 1.7.10, sketch an accurate graph of y = p’(x).
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34 34

Figure 1.7.10: At left, the piecewise linear function y = p(x). At right, axes for plotting
y=p'().

6.  For each of the following prompts, give an example of a function that satisfies the stated
criteria. A formula or a graph, with reasoning, is sufficient for each. If no such example
is possible, explain why.

a. A function f that is continuous at a = 2 but not differentiable at a = 2.
b. A function g that is differentiable at 2 = 3 but does not have a limit at a = 3.

c. A function h that has a limit at a = -2, is defined at 4 = —2, but is not continuous
ata = -2.

d. A function p that satisfies all of the following;:

e p(-1) =3 and limy,_; p(x) =2
e p(0)=1and p’(0)=0
e lim,,; p(x) = p(1) and p’(1) does not exist
7.  Let h(x) be a function whose derivative y = h’(x) is given by the graph on the right in
Figure 1.7.11.
a. Based on the graph of y = h’(x), what can you say about the behavior of the
function y = h(x)?

b. At which values of x is y = I’(x) not defined? What behavior does this lead you
to expect to see in the graph of y = h(x)?

c. Isit possible for y = h(x) to have points where / is not continuous? Explain your
answer.

d. On the axes provided at left, sketch at least two distinct graphs that are possible
functions y = h(x) thateach have a derivative y = h’(x) that matches the provided
graph at right. Explain why there are multiple possibilities for y = h(x).
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3 34
2..
y="h(x)
Q) 1 Q=0
-3 3 3 2 -1 1 2 3
=) O
24
34 34

Figure 1.7.11: Axes for plotting y = h(x) and, at right, the graph of y = h’(x).

8.  Consider the function g(x) = +/|x|.

a. Use a graph to explain visually why g is not differentiable at x = 0.

b. Use the limit definition of the derivative to show that

Vil

g'0) = lim 5=

c. Investigate the value of g’(0) by estimating the limit in (b) using small positive

1/1-0.01]

and negative values of /1. For instance, you might compute ~57—. Be sure to use
several different values of i (both positive and negative), including ones closer to
0 than 0.01. What do your results tell you about g’(0)?

d. Use your graph in (a) to sketch an approximate graph of y = g’(x).
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1.8 The Tangent Line Approximation

Motivating Questions

¢ What is the formula for the general tangent line approximation to a differentiable
function y = f(x) at the point (a, f(a))?

* What is the principle of local linearity and what is the local linearization of a differ-
entiable function f at a point (a, f(a))?

¢ How does knowing just the tangent line approximation tell us information about the
behavior of the original function itself near the point of approximation? How does
knowing the second derivative’s value at this point provide us additional knowledge
of the original function’s behavior?

Among all functions, linear functions are simplest. One of the powerful consequences of
a function y = f(x) being differentiable at a point (a, f(a)) is that, up close, the function
y = f(x) is locally linear and looks like its tangent line at that point. In certain circum-
stances, this allows us to approximate the original function f with a simpler function L that
is linear: this can be advantageous when we have limited information about f or when f
is computationally or algebraically complicated. We will explore all of these situations in
what follows.

It is essential to recall that when f is differentiable at x = a, the value of f’(a) provides the
slope of the tangent line to y = f(x) at the point (a, f(a)). If we know both a point on the line
and the slope of the line we can find the equation of the tangent line and write the equation
in point-slope form®.

Preview Activity 1.8.1. Consider the function y = g(x) = —x? + 3x +2.

a. Use the limit definition of the derivative to compute a formula for y = g’(x).
b. Determine the slope of the tangent line to y = g(x) at the value x = 2.
c. Compute g(2).

d. Find an equation for the tangent line to y = g(x) at the point (2, g(2)). Write
your result in point-slope form.

e. On the axes provided in Figure 1.8.1, sketch an accurate, labeled graph of y =
g(x) along with its tangent line at the point (2, g(2)).

Recall that a line with slope m that passes through (xo, o) has equation y — yp = m(x — x¢), and this is the
point-slope form of the equation.
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Figure 1.8.1: Axes for plotting y = g(x) and its tangent line to the point (2, g(2)).

1.8.1 The tangent line

Given a function f that is differentiable at x = a, we know that we can determine the slope
of the tangent line to y = f(x) at (4, f(a)) by computing f’(a). The equation of the resulting
tangent line is given in point-slope form by

y = fla)=f'(a)(x —a) or y = f'(a)(x —a) + f(a).

Note well: there is a major difference between f(a) and f(x) in this context. The former is
a constant that results from using the given fixed value of a, while the latter is the general
expression for the rule that defines the function. The same is true for f’(a) and f’(x): we
must carefully distinguish between these expressions. Each time we find the tangent line,
we need to evaluate the function and its derivative at a fixed a-value.

In Figure 1.8.2, we see the graph of a function f and its tangent line at the point (a, f(a)).
Notice how when we zoom in we see the local linearity of f more clearly highlighted. The
function and its tangent line are nearly indistinguishable up close. Local linearity can also
be seen dynamically in the java applet at http://gvsu.edu/s/6].

1.8.2 The local linearization

A slight change in perspective and notation will enable us to be more precise in discussing
how the tangent line approximates f near x = 4. By solving for y, we can write the equation
for the tangent line as

y = f'@)(x —a)+ f(a)

This line is itself a function of x. Replacing the variable y with the expression L(x), we call
L(x) = f'(a)(x —a) + f(a)
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Figure 1.8.2: A function y = f(x) and its tangent line at the point (a, f(a)): at left, from a
distance, and at right, up close. At right, we label the tangent line function by y = L(x) and
observe that for x near a, f(x) ~ L(x).

the local linearization of f at the point (a, f(a)). In this notation, L(x) is nothing more than a
new name for the tangent line. As we saw above, for x close to a, f(x) = L(x).

Example 1.8.3 Suppose that a function y = f(x) has its tangent line approximation given by
L(x) = 3—2(x —1) at the point (1, 3), but we do not know anything else about the function f.
To estimate a value of f(x) for x near 1, such as f(1.2), we can use the fact that f(1.2) ~ L(1.2)
and hence

f(12)~L(1.2) =3-2(1.2-1) =3 -2(0.2) = 2.6.

We emphasize that y = L(x) is simply a new name for the tangent line function. Using this
new notation and our observation that L(x) ~ f(x) for x near a, it follows that we can write

f(x)~ f(a)+ f'(a)(x — a) for x near a.

Activity 1.8.2. Suppose it is known that for a given differentiable function y = g(x),
its local linearization at the point where a = —1is given by L(x) = =2 + 3(x + 1).

a. Compute the values of L(-1) and L’(-1).
b. What must be the values of g(-1) and g’(-1)? Why?

c. Do you expect the value of g(—1.03) to be greater than or less than the value of
g(=1)? Why?

d. Use the local linearization to estimate the value of g(—1.03).

e. Suppose that you also know that g”(-1) = 2. What does this tell you about the
graphof y = g(x) ata = -1?
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f. For x near -1, sketch the graph of the local linearization y = L(x) as well as a
possible graph of y = g(x) on the axes provided in Figure 1.8.4.

Figure 1.8.4: Axes for plotting y = L(x) and y = g(x).

From Activity 1.8.2, we see that the local linearization y = L(x)is a linear function that shares
two important values with the function y = f(x) that it is derived from. In particular,

® because L(x) = f(a) + f'(a)(x — a), it follows that L(a) = f(a); and

¢ because L is a linear function, its derivative is its slope.

Hence, L'(x) = f’(a) for every value of x, and specifically L’(a) = f’(a). Therefore, we see
that L is a linear function that has both the same value and the same slope as the function f
at the point (a, f(a)).

Thus, if we know the linear approximation y = L(x) for a function, we know the original
function’s value and its slope at the point of tangency. What remains unknown, however, is
the shape of the function f at the point of tangency. There are essentially four possibilities,
as shown in Figure 1.8.5.

L~ L=

N
] . ]

Figure 1.8.5: Four possible graphs for a nonlinear differentiable function and how it can be
situated relative to its tangent line at a point.
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These possible shapes result from the fact that there are three options for the value of the
second derivative: either f”(a) <0, f”(a) =0, or f”(a) > 0.

e If f”(a) > 0, then we know the graph of f is concave up, and we see the first possibility
on the left, where the tangent line lies entirely below the curve.

e If f”(a) < 0, then f is concave down and the tangent line lies above the curve, as shown
in the second figure.

e If f”(a) = 0 and f” changes sign at x = 4, the concavity of the graph will change, and
we will see either the third or fourth figure.2.

* A fifth option (which is not very interesting) can occur if the function f itself is linear,
so that f(x) = L(x) for all values of x.

The plots in Figure 1.8.5 highlight yet another important thing that we can learn from the
concavity of the graph near the point of tangency: whether the tangent line lies above or
below the curve itself. This is key because it tells us whether or not the tangent line ap-
proximation’s values will be too large or too small in comparison to the true value of f. For
instance, in the first situation in the leftmost plot in Figure 1.8.5 where f”(a) > 0, because
the tangent line falls below the curve, we know that L(x) < f(x) for all values of x near a.

Activity 1.8.3. This activity concerns a function f(x) about which the following infor-
mation is known:

¢ f is a differentiable function defined at every real number x

e f(2)=-1
* y = f’(x) has its graph given in Figure 1.8.6

y=f'(x)

Figure 1.8.6: At center, a graph of y = f’(x); at left, axes for plotting y = f(x); at
right, axes for plotting y = f”(x).

Your task is to determine as much information as possible about f (especially near
the value a = 2) by responding to the questions below.

2t is possible that f”(a) = 0 but f” does not change sign at x = a, in which case the graph will look like one of
the first two options.
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a. Find a formula for the tangent line approximation, L(x), to f at the point (2, -1).

b. Use the tangent line approximation to estimate the value of f(2.07). Show your
work carefully and clearly.

c. Sketch a graph of y = f”(x) on the righthand grid in Figure 1.8.6; label it ap-
propriately.

d. Is the slope of the tangent line to y = f(x) increasing, decreasing, or neither
when x = 2? Explain.

e. Sketch a possible graph of y = f(x) near x = 2 on the lefthand grid in Fig-
ure 1.8.6. Include a sketch of y = L(x) (found in part (a)). Explain how you
know the graph of y = f(x) looks like you have drawn it.

f. Does your estimate in (b) over- or under-estimate the true value of f(2.07)?
Why?

The idea that a differentiable function looks linear and can be well-approximated by a lin-
ear function is an important one that finds wide application in calculus. For example, by
approximating a function with its local linearization, it is possible to develop an effective
algorithm to estimate the zeroes of a function. Local linearity also helps us to make further
sense of certain challenging limits. For instance, we have seen that the limit

. sin(x)
lim ——=
x—0 X

is indeterminate, because both its numerator and denominator tend to 0. While there is no
algebra that we can do to simplify %(x), it is straightforward to show that the linearization of
f(x) = sin(x) at the point (0, 0) is given by L(x) = x. Hence, for values of x near 0, sin(x) ~ x,

and therefore

sin(x) x
—_— X — = 1,
x x
which makes plausible the fact that
lim sin(x) _ 1.
x—0 X

1.8.3 Summary

¢ The tangent line to a differentiable function y = f(x) at the point (a, f(a)) is given in
point-slope form by the equation

y = fa) = f'(@)(x - a).

¢ The principle of local linearity tells us that if we zoom in on a point where a function
y = f(x) is differentiable, the function will be indistinguishable from its tangent line.
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That is, a differentiable function looks linear when viewed up close. We rename the
tangent line to be the function y = L(x), where L(x) = f(a) + f’(a)(x — a). Thus,
f(x) = L(x) for all x near x = a.

If we know the tangent line approximation L(x) = f(a) + f’(a)(x — a) to a function
y = f(x), then because L(a) = f(a) and L’(a) = f’(a), we also know the values of both
the function and its derivative at the point where x = a. In other words, the linear
approximation tells us the height and slope of the original function. If, in addition, we
know the value of f”(a), we then know whether the tangent line lies above or below
the graph of y = f(x), depending on the concavity of f.

1.8.4 Exercises
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Approximating /x. Use linear approximation to approximate V36.1 as follows.

Let f(x) = vx. The equation of the tangent line to f(x) at x = 36 can be written in the
form y = mx + b. Compute m and b. Using this find the approximation for V36.1.

Local linearization of a graph. The figure below shows f(x) and its local linearization
atx = a, y = 4x — 4. (The local linearization is shown in blue.)

What is the value of a? What is the value of f(a)? Use the linearization to approximate
the value of f(3.2). Is the approximation an under- or overestimate?

Estimating with the local linearization. Suppose that f(x) is a function with f(130) =
46 and f’(130) = 1. Estimate f(125.5).

Predicting behavior from the local linearization. The temperature, H, in degrees Cel-
sius, of a cup of coffee placed on the kitchen counter is given by H = f(t), where f is in
minutes since the coffee was put on the counter.

(a) Is f'(t) positive or negative?
(b) What are the units of f/(30)?

Suppose that | f'(30)| = 0.9 and f(30) = 51. Fill in the blanks (including units where
needed) and select the appropriate terms to complete the following statement about
the temperature of the coffee in this case.

At__minutes after the coffee was put on the counter, its (O derivative O temperature
O change in temperature) is and will (Oincrease 0O decrease)




1.8 The Tangent Line Approximation

by about in the next 75 seconds.

A certain function y = p(x) has its local linearization at a = 3 given by L(x) = —2x + 5.
a. What are the values of p(3) and p’(3)? Why?

b. Estimate the value of p(2.79).

c. Suppose that p”(3) = 0 and you know that p”(x) < 0 for x < 3. Is your estimate
in (b) too large or too small?

d. Suppose that p”(x) > 0 for x > 3. Use this fact and the additional information
above to sketch an accurate graph of y = p(x) near x = 3. Include a sketch of
y = L(x) in your work.

A potato is placed in an oven, and the potato’s temperature F (in degrees Fahrenheit) at
various points in time is taken and recorded in the following table. Time t is measured
in minutes.

tF@b)
0 70
15 1805
30 251
45 29
60 3245
75 3428
90 3545

Table 1.8.7: Temperature data for the potato.

a. Use a central difference to estimate F’(60). Use this estimate as needed in subse-
quent questions.

b. Find the local linearization y = L(f) to the function y = F(t) at the point where
a = 60.

c. Determine an estimate for F(63) by employing the local linearization.
d. Do you think your estimate in (c) is too large or too small? Why?

An object moving along a straight line path has a differentiable position function y =
s(t); s(t) measures the object’s position relative to the origin at time ¢. It is known that
at time t = 9 seconds, the object’s position is s(9) = 4 feet (i.e., 4 feet to the right of
the origin). Furthermore, the object’s instantaneous velocity at ¢t = 9 is —1.2 feet per
second, and its acceleration at the same instant is 0.08 feet per second per second.

a. Use local linearity to estimate the position of the object at ¢ = 9.34.
b. Is your estimate likely too large or too small? Why?
c. In everyday language, describe the behavior of the moving object at t = 9. Is it

moving toward the origin or away from it? Is its velocity increasing or decreasing?
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Chapter 1 Understanding the Derivative

8.  For a certain function f, its derivative is known to be f’(x) = (x — 1)e~". Note that you
do not know a formula for y = f(x).

a. At what x-value(s) is f’(x) = 0? Justify your answer algebraically, but include a
graph of f’ to support your conclusion.

b. Reasoning graphically, for what intervals of x-values is f”(x) > 0? What does
this tell you about the behavior of the original function f? Explain.

¢. Assuming that f(2) = -3, estimate the value of f(1.88) by finding and using the
tangent line approximation to f at x = 2. Is your estimate larger or smaller than
the true value of f(1.88)? Justify your answer.
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CHAPTER 2 .

Computing Derivatives

2.1 Elementary derivative rules

Motivating Questions

¢ What are alternate notations for the derivative?

¢ How can we use the algebraic structure of a function f(x) to compute a formula for
frx?

* What is the derivative of a power function of the form f(x) = x"? What is the deriv-
ative of an exponential function of form f(x) = a*?

e If we know the derivative of y = f(x), what is the derivative of y = k f(x), where k is
a constant?

¢ If we know the derivatives of ¥ = f(x) and y = g(x), how do we compute the deriv-
ative of y = f(x) + g(x)?

In Chapter 1, we developed the concept of the derivative of a function. We now know that
the derivative f’ of a function f measures the instantaneous rate of change of f with respect
to x. The derivative also tells us the slope of the tangent line to y = f(x) at any given value
of x. So far, we have focused on interpreting the derivative graphically or, in the context of
a physical setting, as a meaningful rate of change. To calculate the value of the derivative at
a specific point, we have relied on the limit definition of the derivative,

)~ /)

f(x) = lim

In this chapter, we investigate how the limit definition of the derivative leads to interesting
patterns and rules that enable us to find a formula for f’(x) quickly, without using the limit
definition directly. For example, we would like to apply shortcuts to differentiate a function
such as g(x) = 4x” — sin(x) + 3e*

OO0



Chapter 2 Computing Derivatives

Preview Activity 2.1.1. Functions of the form f(x) = x", wheren =1,2,3, ..., are of-
ten called power functions. The first two questions below revisit work we did earlier
in Chapter 1, and the following questions extend those ideas to higher powers of x.

a. Use the limit definition of the derivative to find f’(x) for f(x) = x2.
b. Use the limit definition of the derivative to find f’(x) for f(x) = x>.

c. Use the limit definition of the derivative to find f’(x) for f(x) = x* (Hint:
(a + b)* = a* + 4a%b + 6a%b? + 4ab® + b*. Apply this rule to (x + h)* within
the limit definition.)

d. Based on your work in (a), (b), and (c), what do you conjecture is the derivative
of f(x) = x%2 Of f(x) = x'3?

e. Conjecture a formula for the derivative of f(x) = x" that holds for any positive
integer n. That is, given f(x) = x" where n is a positive integer, what do you
think is the formula for f’(x)?

2.1.1 Some Key Notation

In addition to our usual f’ notation, there are other ways to denote the derivative of a func-
tion, as well as the instruction to take the derivative. If we are thinking about the relationship
between y and x, we sometimes denote the derivative of i with respect to x by the symbol

dy
dx

2

4

which we read “dee-y dee-x. , we'll write that the derivative is

Z—Z = 2x. This notation comes from the fact that the derivative is related to the slope of a

For example, if y = x

line, and slope is measured by 2—%. Note that while we read % as “change in y over change

dy

in x,” we view - as a single symbol, not a quotient of two quantities.

We use a variant of this notation as the instruction to take the derivative. In particular,

d
Ix (O]

means “take the derivative of the quantity in O with respect to x.” For example, we may
write -4 [x2] = 2x.

It is important to note that the independent variable can be different from x. If we have
f(z) = z2, we then write f'(z) = 2z. Similarly, if y = +?, we say % = 2t. Anditisalso true that

%[qz] = 2g. This notation may also be used for second derivatives: f”(z) = % [%] = ZZTJ;.

In what follows, we’ll build a repertoire of functions for which we can quickly compute the
derivative.
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2.1 Elementary derivative rules

2.1.2 Constant, Power, and Exponential Functions

So far, we know the derivative formula for two important classes of functions: constant
functions and power functions. If f(x) = c is a constant function, its graph is a horizontal
line with slope zero at every point. Thus, f—x [c] = 0. We summarize this with the following
rule.

Constant Functions.
( For any real number ¢, if f(x) = ¢, then f’(x) = 0. j

Example 2.1.1If f(x) =7, then f’(x) = 0. Similarly, %[\/5] =0.

In your work in Preview Activity 2.1.1, you conjectured that for any positive integer 7, if
f(x) = x", then f’(x) = nx"~!. This rule can be formally proved for any positive integer n,
and also for any nonzero real number (positive or negative).

Power Functions.
(- For any nonzero real number 7, if f(x) = x", then f’(x) = nx"1. J

Example 2.1.2 Using the rule for power functions, we can compute the following derivatives.
If g(z) = z73, then g’(z) = —3z*. Similarly, if h(t) = +7/°, then 4 = Z#2/5 and j—q[q"] =
g™ L

It will be instructive to have a derivative formula for one more type of basic function. For
now, we simply state this rule without explanation or justification; we will explore why this

rule is true in one of the exercises. And we will encounter graphical reasoning for why the
rule is plausible in Preview Activity 2.2.1.

Exponential Functions.

( For any positive real number g, if f(x) = a¥, then f’(x) = a* In(a). ]

Example 2.1.3 If f(x) = 2%, then f’(x) = 2 In(2). Similarly, for p(t) = 10¢, p’(t) = 10" In(10).
It is especially important to note that when a = ¢, where ¢ is the base of the natural logarithm

function, we have that
d
P [e*] = e*In(e) = e*

since In(e) = 1. This is an extremely important property of the function e*: its derivative
function is itself!

Note carefully the distinction between power functions and exponential functions: in power
functions, the variable is in the base, as in x2, while in exponential functions, the variable is
in the power, as in 2*. As we can see from the rules, this makes a big difference in the form
of the derivative.
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Chapter 2 Computing Derivatives

Activity 2.1.2. Use the three rules above to determine the derivative of each of the
following functions. For each, state your answer using full and proper notation, la-
beling the derivative with its name. For example, if you are given a function h(z), you

should write “h’(z) =" or ”% =" as part of your response.
a. f(t)=m d. p(x) =372 f. s(q) =g
b. g(z) =7*
c. h(w) = w¥* e. r(t) = (V2)! g m(t) =%

2.1.3 Constant Multiples and Sums of Functions

Next we will learn how to compute the derivative of a function constructed as an algebraic
combination of basic functions. For instance, we’d like to be able to take the derivative of a
polynomial function such as

p(t) =3t = 7t* + 12 -9,

which is a sum of constant multiples of powers of t. To that end, we develop two new rules:
the Constant Multiple Rule and the Sum Rule.

How is the derivative of y = k f(x) related to the derivative of y = f(x)? Recall that when
we multiply a function by a constant k, we vertically stretch the graph by a factor of |k| (and
reflect the graph across y = 0 if k < 0). This vertical stretch affects the slope of the graph, so
the slope of the function y = k f(x) is k times as steep as the slope of y = f(x). Thus, when
we multiply a function by a factor of k, we change the value of its derivative by a factor of k
as well.!,

The Constant Multiple Rule.

For any real number k, if f(x) is a differentiable function with derivative f’(x), then

=k f(0)] = kf'(x)-

In words, this rule says that “the derivative of a constant times a function is the constant
times the derivative of the function.”

Example 2.1.4 If g(t) = 3 - 5!, we have g/(t) = 3 - 5! In(5). Similarly, &£ [5z72] = 5(-2z7%).

Next we examine a sum of two functions. If we have y = f(x) and y = g(x), we can compute
a new function y = (f + g)(x) by adding the outputs of the two functions: (f + g)(x) =
f(x) + g(x). Not only is the value of the new function the sum of the values of the two
known functions, but the slope of the new function is the sum of the slopes of the known
functions. Therefore?, we arrive at the following Sum Rule for derivatives:

The Constant Multiple Rule can be formally proved as a consequence of properties of limits, using the limit
definition of the derivative.

2Like the Constant Multiple Rule, the Sum Rule can be formally proved as a consequence of properties of limits,
using the limit definition of the derivative.
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2.1 Elementary derivative rules

The Sum Rule.

If f(x) and g(x) are differentiable functions with derivatives f’(x) and g’(x) respec-
tively, then L[ f(x) + g(x)] = f'(x) + g'(x).

In words, the Sum Rule tells us that “the derivative of a sum is the sum of the derivatives.”
It also tells us that a sum of two differentiable functions is also differentiable. Furthermore,
because we can view the difference function y = (f — g)(x) = f(x) —g(x)asy = f(x) +(-1-
g(x)), the Sum Rule and Constant Multiple Rules together tell us that % [f(x)+(-1-g(x))] =
f'(x) = g’(x), or that “the derivative of a difference is the difference of the derivatives.” We
can now compute derivatives of sums and differences of elementary functions.

Example 2.1.5 Using the sum rule, ﬁ(Zw + w?) = 2¥In(2) + 2w. Using both the sum and
constant multiple rules, if h(q) = 3¢q° — 4973, then h’(q) = 3(6g°) — 4(-3q %) = 18¢4° + 12¢7*.
Activity 2.1.3. Use only the rules for constant, power, and exponential functions, to-
gether with the Constant Multiple and Sum Rules, to compute the derivative of each
function below with respect to the given independent variable. Note well that we do
not yet know any rules for how to differentiate the product or quotient of functions.
This means that you may have to do some algebra first on the functions below before
you can actually use existing rules to compute the desired derivative formula. In each
case, label the derivative you calculate with its name using proper notation such as
f'(x), h'(z), dr/dt, etc.

a. f(x)=x5/3 — x4 4 2% e. s(y) =2+ -1

b. g(x) = 14e* +3x° — x ,
1 f. l/](x) — X’—x+42
c. h(z)=+Vz+ ;5 +5 x

d. r(t) = V5317 — met + ¢* g pla)=3a*-2a%+7a%> —a+12

In the same way that we have shortcut rules to help us find derivatives, we introduce some
language that is simpler and shorter. Often, rather than say “take the derivative of f,” we’ll
instead say simply “differentiate f.” Similarly, if the derivative exists at a point, we say “f
is differentiable at that point,” or that f can be differentiated.

As we work with the algebraic structure of functions, it is important to develop a big picture
view of what we are doing. Here, we make several general observations based on the rules
we have so far.

¢ The derivative of any polynomial function will be another polynomial function, and
that the degree of the derivative is one less than the degree of the original function.
For instance, if p(t) = 7t> — 4t3 + 8t, p is a degree 5 polynomial, and its derivative,
p'(t) = 35t* — 12t? + 8, is a degree 4 polynomial.

¢ The derivative of any exponential function is another exponential function: for exam-
ple, if g(z) =7 - 2%, then g’(z) = 7 - 27 In(2), which is also exponential.

* We should not lose sight of the fact that all of the meaning of the derivative that we
developed in Chapter 1 still holds. The derivative measures the instantaneous rate of

93



Chapter 2 Computing Derivatives

change of the original function, as well as the slope of the tangent line at any selected
point on the curve.

Activity 2.1.4. Each of the following questions asks you to use derivatives to answer
key questions about functions. Be sure to think carefully about each question and to
use proper notation in your responses.

a. Find the slope of the tangent line to h(z) = vz + % at the point where z = 4.

b. A population of cells is growing in such a way that its total number in millions
is given by the function P(t) = 2(1.37)" + 32, where t is measured in days.

i. Determine the instantaneous rate at which the population is growing on
day 4, and include units on your answer.

ii. Is the population growing at an increasing rate or growing at a decreasing
rate on day 4? Explain.

c. Find an equation for the tangent line to the curve p(a) = 3a* —2a% + 74> —a + 12
at the point where a = —1.

d. What is the difference between being asked to find the slope of the tangent line
(asked in (a)) and the equation of the tangent line (asked in (c))?

2.1.4 Summary

* Given a differentiable function y = f(x), we can express the derivative of f in several
different notations: f’(x), %, Z—Z, and %[f(x)].

* The limit definition of the derivative leads to patterns among certain families of func-
tions that enable us to compute derivative formulas without resorting directly to the
limit definition. For example, if f is a power function of the form f(x) = x", then
f'(x) = nx""! for any real number 1 other than 0. This is called the Rule for Power
Functions.

¢ We have stated a rule for derivatives of exponential functions in the same spirit as the
rule for power functions: for any positive real number a, if f(x) = a*, then f'(x) =
a*In(a).

¢ If we are given a constant multiple of a function whose derivative we know, or a sum
of functions whose derivatives we know, the Constant Multiple and Sum Rules make
it straightforward to compute the derivative of the overall function. More formally,
if f(x) and g(x) are differentiable with derivatives f’(x) and g’(x) and a and b are
constants, then

L ap()+bgo)] = af () + by' (o)

94



2.1 Elementary derivative rules
2.1.5 Exercises

1.  Derivative of a power function. Find the derivative of y = x'5/16.

1
2. Derivative of a rational function. Find the derivative of f(x) = —;.
x

3.  Derivative of a root function. Find the derivative of y = V/x.

4. Derivative of a quadratic. Find the derivative of f(t) = 3t — 7t + 2.

5. Derivative of a sum of power functions. Find the derivative of y = 6t° — 9Vt + Z.

6. Simplifying a product before differentiating. Find the derivative of y = vx(x> +9).

6+9
7.  Simplifying a quotient before differentiating. Find the derivative of y = z ; .

8. Finding a tangent line equation. Find an equation for the line tangent to the graph of

f at (3,76), where f is given by f(x) = 4x3 — 4x2 + 4.

9. Determining where f'(x) = 0. If f(x) = x3 + 6x2 — 288x + 5, find analytically all values
of x for which f’(x) = 0.

10. Let f and g be differentiable functions for which the following information is known:
f(2)=5,9(2)=-3, f'(2)=-1/2,9'(2) = 2.
a. Let I be the new function defined by the rule h(x) = 3f(x) — 4g(x). Determine
h(2) and K’ (2).

b. Find an equation for the tangent line to y = h(x) at the point (2, 1(2)).

c. Let p be the function defined by the rule p(x) = =2f(x) + 1g(x). Is p increasing,
decreasing, or neither at 2 = 2? Why?

d. Estimate the value of p(2.03) by using the local linearization of p at the point
2,p@2)-

11. Let functions p and g be the piecewise linear functions given by their respective graphs
in Figure 2.1.6. Use the graphs to answer the following questions.

a. At what values of x is p not differentiable? At what values of x is g not differen-
tiable? Why?

b. Let r(x) = p(x) + 2q(x). At what values of x is r not differentiable? Why?
¢. Determine r’(-2) and r’(0).

d. Find an equation for the tangent line to y = r(x) at the point (2, (2)).
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Chapter 2 Computing Derivatives

12,

13.

96

Figure 2.1.6: The graphs of p (in blue) and g (in green).

Consider the functions r(t) = t' and s(t) = arccos(t), for which you are given the

facts that 7’(t) = t!(In(t) + 1) and s’(t) = — \/11_7 Do not be concerned with where these

derivative formulas come from. We restrict our interest in both functions to the domain
0<t<l.

a. Let w(t) = 3t! — 2arccos(t). Determine w’(t).

b. Find an equation for the tangent line to y = w(t) at the point (%, w(%))

c. Leto(t) = t! + arccos(t). Is v increasing or decreasing at the instant ¢ = %? Why?

Let f(x) = a*. The goal of this problem is to explore how the value of a affects the
derivative of f(x), without assuming we know the rule for f—x[a"] that we have stated
and used in earlier work in this section.

a. Use the limit definition of the derivative to show that

X

a*-al —a
’ — 1~
f) H h
b. Explain why it is also true that
a -1
"(x) =a* - lim ——.
flx)=a o0 h

c. Use computing technology and small values of h to estimate the value of

h _
L:hma 1
h—0

when a = 2. Do likewise when a = 3.

d. Note that it would be ideal if the value of the limit L was 1, for then f would be
a particularly special function: its derivative would be simply a*, which would
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mean that its derivative is itself. By experimenting with different values of a be-
tween 2 and 3, try to find a value for a for which

h
a -1

L=1
hlg(l) h

=1

. Compute In(2) and In(3). What does your work in (b) and (c) suggest is true about
412%] and £ [3*]?

. How do your investigations in (d) lead to a particularly important fact about the
function f(x) = e*?
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2.2 The sine and cosine functions

Motivating Questions

 What is a graphical justification for why -4 [a*] = a* In(a)?

e What do the graphs of y = sin(x) and y = cos(x) suggest as formulas for their re-
spective derivatives?

* Once we know the derivatives of sin(x) and cos(x), how do previous derivative rules
work when these functions are involved?

Throughout Chapter 2, we will develop shortcut derivative rules to help us bypass the limit
definition and quickly compute f’(x) from a formula for f(x). In Section 2.1, we stated the
rule for power functions,

if f(x)=x", then f'(x) = nx"",
and the rule for exponential functions,
if a is a positive real number and f(x) = a*, then f'(x) = a* In(a).

Later in this section, we will use a graphical argument to conjecture derivative formulas for
the sine and cosine functions.

Preview Activity 2.2.1. Consider the function g(x) = 2%, which is graphed in Fig-
ure 2.2.1.

a. Ateach of x = -2,-1,0,1,2, use a straightedge to sketch an accurate tangent
line to y = g(x).

b. Use the provided grid to estimate the slope of the tangent line you drew at each
point in (a).

c. Use the limit definition of the derivative to estimate g’(0) by using small values
of h, and compare the result to your visual estimate for the slope of the tangent
line to y = g(x) at x = 0in (b).

d. Based on your work in (a), (b), and (c), sketch an accurate graph of y = g’(x) on
the axes adjacent to the graph of y = g(x).

e. Write at least one sentence that explains why it is reasonable to think that g’(x) =
cg(x), where c is a constant. In addition, calculate In(2), and then discuss how

this value, combined with your work above, reasonably suggests that g’(x) =
2% In(2).

98



2.2 The sine and cosine functions

7 7
6 6
5 5
4 4
3 3
2 2
/ 1
-2 -1 1 2 -2 -1 1 2
Figure 2.2.1: At left, the graph of y = g(x) = 2*. Atright, axes for plotting y = g’(x).

2.2.1 The sine and cosine functions

The sine and cosine functions are among the most important functions in all of mathemat-
ics. Sometimes called the circular functions due to their definition on the unit circle, these
periodic functions play a key role in modeling repeating phenomena such as tidal eleva-
tions, the behavior of an oscillating mass attached to a spring, or the location of a point
on a bicycle tire. Like polynomial and exponential functions, the sine and cosine functions
are considered basic functions, ones that are often used in building more complicated func-
tions. As such, we would like to know formulas for %[sin(x)] and %[cos(x)], and the next
two activities lead us to that end.

Activity 2.2.2. Consider the function f(x) = sin(x), which is graphed in Figure 2.2.2

below. Note carefully that the grid in the diagram does not have boxes that are 1 x 1,
but rather approximately 1.57 X 1, as the horizontal scale of the grid is 7/2 units per

box.
' | ' |
2n

—2n - _1| T —2n - _1| T 2n

Figure 2.2.2: At left, the graph of y = f(x) = sin(x).

a. Ateachof x = =271, 3%, -7, —Z,0, &, 7t, 3%, 271, use a straightedge to sketch an
2 2 2 & g

27
accurate tangent line to y = f(x).

b. Use the provided grid to estimate the slope of the tangent line you drew at each
point. Pay careful attention to the scale of the grid.
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c. Use the limit definition of the derivative to estimate f’(0) by using small values
of h, and compare the result to your visual estimate for the slope of the tangent
line to y = f(x) at x = 0 in (b). Using periodicity, what does this result suggest
about f’(2m)? about f’(-2m)?

d. Based on your work in (a), (b), and (c), sketch an accurate graph of y = f’(x) on
the axes adjacent to the graph of y = f(x).

e. What familiar function do you think is the derivative of f(x) = sin(x)?

Activity 2.2.3. Consider the function g(x) = cos(x), which is graphed in Figure 2.2.3
below. Note carefully that the grid in the diagram does not have boxes that are 1 x 1,
but rather approximately 1.57 X 1, as the horizontal scale of the grid is 7/2 units per

= |

—2n S} 1 | T 2 —2n - 1 | T 2n

Figure 2.2.3: At left, the graph of y = g(x) = cos(x).

a. Ateachof x = -2m, —37”, -n,-%,0,7,m, ?’7”, 27, use a straightedge to sketch an

accurate tangent line to y = g(x).

b. Use the provided grid to estimate the slope of the tangent line you drew at each
point. Again, note the scale of the axes and grid.

c. Use the limit definition of the derivative to estimate g’(7) by using small values
of h, and compare the result to your visual estimate for the slope of the tangent
line to y = g(x) at x = % in (b). Using periodicity, what does this result sug-
gest about g'(—2%)? can symmetry on the graph help you estimate other slopes
easily?

d. Based on your work in (a), (b), and (c), sketch an accurate graph of y = g’(x) on
the axes adjacent to the graph of y = g(x).

e. What familiar function do you think is the derivative of g(x) = cos(x)?

The results of the two preceding activities suggest that the sine and cosine functions not only
have beautiful connections such as the identities sin?(x)+cos?(x) = 1 and cos(x — 7) = sin(x),
but that they are even further linked through calculus, as the derivative of each involves the
other. The following rules summarize the results of the activities!.

IThese two rules may be formally proved using the limit definition of the derivative and the expansion identities
for sin(x + k) and cos(x + h).
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2.2 The sine and cosine functions

Sine and Cosine Functions.

For all real numbers x,

dd—x[sin(x)] = cos(x) and %[cos(x)] = —sin(x).

We have now added the sine and cosine functions to our library of basic functions whose
derivatives we know. The constant multiple and sum rules still hold, of course, as well as all
of the inherent meaning of the derivative.

Activity 2.2.4. Answer each of the following questions. Where a derivative is re-
quested, be sure to label the derivative function with its name using proper notation.

a. Determine the derivative of k() = 3 cos(t) — 4 sin(t).

b. Find the exact slope of the tangent line to y = f(x) = 2x + %(x) at the point
where x = 7.

c. Find the equation of the tangent line to y = g(x) = x? + 2 cos(x) at the point
where x = 7.

d. Determine the derivative of p(z) = z* + 4% + 4 cos(z) — sin(%).

e. The function P(t) = 24 + 8sin(t) represents a population of a particular kind of
animal that lives on a small island, where P is measured in hundreds and f is
measured in decades since January 1, 2010. What is the instantaneous rate of
change of P on January 1, 2030? What are the units of this quantity? Write a
sentence in everyday language that explains how the population is behaving at
this point in time.

2.2.2 Summary

¢ For an exponential function f(x) = a* (a > 1), the graph of f’(x) appears to be a scaled
version of the original function. In particular, careful analysis of the graph of f(x) =
2%, suggests that %[2’*] = 2*In(2), which is a special case of the rule we stated in
Section 2.1.

e By carefully analyzing the graphs of y = sin(x) and ¥ = cos(x), and by using the
limit definition of the derivative at select points, we found that d% [sin(x)] = cos(x) and
f—x[cos(x)] = —sin(x).

* We note that all previously encountered derivative rules still hold, but now may also
be applied to functions involving the sine and cosine. All of the established meaning
of the derivative applies to these trigonometric functions as well.
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2.2.3 Exercises

1. Suppose that V(t) = 24 - 1.07" + 6sin(t) represents the value of a person’s investment
portfolio in thousands of dollars in year ¢, where t = 0 corresponds to January 1, 2010.

a. At what instantaneous rate is the portfolio’s value changing on January 1, 2012?
Include units on your answer.

b. Determine the value of V”(2). What are the units on this quantity and what does
it tell you about how the portfolio’s value is changing?

c. On the interval 0 < t < 20, graph the function V(t) = 24 - 1.07" + 6sin(t) and
describe its behavior in the context of the problem. Then, compare the graphs of
the functions A(t) = 24-1.07" and V(t) = 24-1.07" + 6 sin(t), as well as the graphs
of their derivatives A’(¢) and V’(t). What is the impact of the term 6 sin(t) on the
behavior of the function V (¢)?

2. Let f(x) = 3cos(x) — 2sin(x) + 6.

a. Determine the exact slope of the tangent line to y = f(x) at the point wherea = %.
b. Determine the tangent line approximation to y = f(x) at the point where a = 7.
c. At the point where a = 7, is f increasing, decreasing, or neither?

d. At the point where a = 37”, does the tangent line to y = f(x) lie above the curve,
below the curve, or neither? How can you answer this question without even
graphing the function or the tangent line?

3. In this exercise, we explore how the limit definition of the derivative more formally
shows that j—x[sin(x)] = cos(x). Letting f(x) = sin(x), note that the limit definition of
the derivative tells us that

Flx) = ,%13(1) sin(x + hh) - sin(x)‘

a. Recall the trigonometric identity for the sine of a sum of angles « and g: sin(a +
B) = sin(a) cos(B) + cos(ar) sin(B). Use this identity and some algebra to show that
im sin(x)(cos(h) — 1) + cos(x) sin(h)

fe) =i

—0 h

b. Next, note that as /1 changes, x remains constant. Explain why it therefore makes
sense to say that

cos(h) —1

’ — . . sm(h)
f'(x) = sin(x) 11111)% p + cos(x) 11111)1})

7E

c. Finally, use small values of & to estimate the values of the two limits in (c):

lim M and lim M
h—0 h—0 h

d. What do your results in (b) and (c) thus tell you about f’(x)?
e. By emulating the steps taken above, use the limit definition of the derivative to

argue convincingly that j—x [cos(x)] = —sin(x).
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2.3 The product and quotient rules

Motivating Questions

* How does the algebraic structure of a function guide us in computing its derivative
using shortcut rules?

* How do we compute the derivative of a product of two basic functions in terms of
the derivatives of the basic functions?

¢ How do we compute the derivative of a quotient of two basic functions in terms of
the derivatives of the basic functions?

* How do the product and quotient rules combine with the sum and constant multiple
rules to expand the library of functions we can differentiate quickly?

So far, we can differentiate power functions (x"), exponential functions (a*), and the two
fundamental trigonometric functions (sin(x) and cos(x)). With the sum rule and constant
multiple rules, we can also compute the derivative of combined functions.

Example 2.3.1 Differentiate
f(x) =7x" —4.9% + msin(x) - V3 cos(x)
Because f is a sum of basic functions, we can now quickly say that f’(x) = 77x'°~4-9% In(9) +
7 cos(x) + V3 sin(x).
What about a product or quotient of two basic functions, such as
p(z) = 2* cos(z),

or .
sin(t) )

q(t) = —;

While the derivative of a sum is the sum of the derivatives, it turns out that the rules for
computing derivatives of products and quotients are more complicated.

Preview Activity 2.3.1. Let f and g be the functions defined by f(t) = 2t? and g(t) =
£+ 4t.

a. Determine f’(t) and g'(#).
b. Let p(t) = 2t?(t3 +4t) and observe that p(t) = f(t)- g(t). Rewrite the formula for

p by distributing the 2t term. Then, compute p’(t) using the sum and constant
multiple rules.

c. True or false: p’(t) = f'(t) - g’ ().

d. Let g(t) = ’532%“ and observe that q(t) = %. Rewrite the formula for g by

dividing each term in the numerator by the denominator and simplify to write
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g as a sum of constant multiples of powers of t. Then, compute q’(t) using the
sum and constant multiple rules.

e. True or false: ¢’(t) = %'

2.3.1 The product rule

As part (b) of Preview Activity 2.3.1 shows, it is not true in general that the derivative of a
product of two functions is the product of the derivatives of those functions. To see why this
is the case, we consider an example involving meaningful functions.

Say that an investor is regularly purchasing stock in a particular company. Let N(t) represent
the number of shares owned on day ¢, where t = 0 represents the first day on which shares
were purchased. Let S(¢) give the value of one share of the stock on day ¢; note that the units
on 5(t) are dollars per share. To compute the total value of the stock on day ¢, we take the
product

V(t) = N(t)shares - 5(¢) dollars per share.

Observe that over time, both the number of shares and the value of a given share will vary.
The derivative N’(t) measures the rate at which the number of shares is changing, while
S’(t) measures the rate at which the value per share is changing. How do these respective
rates of change affect the rate of change of the total value function?

To help us understand the relationship among changes in N, S, and V, let’s consider some
specific data.

® Suppose that on day 100, the investor owns 520 shares of stock and the stock’s current
value is $27.50 per share. This tells us that N(100) = 520 and 5(100) = 27.50.

* On day 100, the investor purchases an additional 12 shares (so the number of shares
held is rising at a rate of 12 shares per day).

® On that same day the price of the stock is rising at a rate of 0.75 dollars per share per
day.

In calculus notation, the latter two facts tell us that N’(100) = 12 (shares per day) and
5’(100) = 0.75 (dollars per share per day). At what rate is the value of the investor’s to-
tal holdings changing on day 100?

Observe that the increase in total value comes from two sources: the growing number of
shares, and the rising value of each share. If only the number of shares is increasing (and
the value of each share is constant), the rate at which which total value would rise is the
product of the current value of the shares and the rate at which the number of shares is
changing. That is, the rate at which total value would change is given by

dollars 12 shares _ 330 dollars
share day day

S(100) - N’(100) = 27.50

105



Chapter 2 Computing Derivatives

Note particularly how the units make sense and show the rate at which the total value V is
changing, measured in dollars per day.

If instead the number of shares is constant, but the value of each share is rising, the rate
at which the total value would rise is the product of the number of shares and the rate of
change of share value. The total value is rising at a rate of

dollars per share dollars

N(100) - 5'(100) = 520 shares - 0.75 day day

Of course, when both the number of shares and the value of each share are changing, we

have to include both of these sources. In that case the rate at which the total value is rising

is

dollars
day

V’(100) = S(100) - N’(100) + N(100) - S’(100) = 330 + 390 = 720

We expect the total value of the investor’s holdings to rise by about $720 on the 100th day.!

Next, we expand our perspective from the specific example above to the more general and
abstract setting of a product p of two differentiable functions, f and g. If P(x) = f(x) - g(x),
our work above suggests that P’(x) = f(x)g’(x) + g(x)f’(x). Indeed, a formal proof using
the limit definition of the derivative can be given to show that the following rule, called the
product rule, holds in general.

Product Rule.

If f and g are differentiable functions, then their product P(x) = f(x) - g(x) is also a
differentiable function, and

P'(x) = f(x)g'(x) + g(x) f'(x).

In light of the earlier example involving shares of stock, the product rule also makes sense
intuitively: the rate of change of P should take into account both how fast f and g are chang-
ing, as well as how large f and g are at the point of interest. In words the product rule says:
if P is the product of two functions f (the first function) and g (the second), then “the deriv-
ative of P is the first times the derivative of the second, plus the second times the derivative
of the first.” It is often a helpful mental exercise to say this phrasing aloud when executing
the product rule.

Example 2.3.2 If P(z) = z® - cos(z), we can use the product rule to differentiate P. The first
function is z* and the second function is cos(z). By the product rule, P’ will be given by
the first, z3, times the derivative of the second, —sin(z), plus the second, cos(z), times the

"While this example highlights why the product rule is true, there are some subtle issues to recognize. For one,
if the stock’s value really does rise exactly $0.75 on day 100, and the number of shares really rises by 12 on day
100, then we’d expect that V(101) = N(101) - S(101) = 532 - 28.25 = 15029. If, as noted above, we expect the total
value to rise by $720, then with V(100) = N(100) - 5(100) = 520 - 27.50 = 14300, then it seems we should find that
V(101) = V(100) + 720 = 15020. Why do the two results differ by 9? One way to understand why this difference
occurs is to recognize that N’(100) = 12 represents an instantaneous rate of change, while our (informal) discussion
has also thought of this number as the total change in the number of shares over the course of a single day. The
formal proof of the product rule reconciles this issue by taking the limit as the change in the input tends to zero.
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derivative of the first, 3z2. That is,

P'(z) = z3(=sin(z)) + cos(z)3z% = —z° sin(z) + 3z% cos(z).

Activity 2.3.2. Use the product rule to answer each of the questions below. Through-
out, be sure to carefully label any derivative you find by name. It is not necessary to
algebraically simplify any of the derivatives you compute.

a. Let m(w) = 3w'4®. Find m’(w).
b. Let h(t) = (sin(t) + cos(t))t*. Find h’(t).

c. Determine the slope of the tangent line to the curve y = f(x) at the point where
a = 1if f is given by the rule f(x) = e* sin(x).

d. Find the tangent line approximation L(x) to the function y = g(x) at the point
where a = —1 if g is given by the rule g(x) = (x? + x)2*.

2.3.2 The quotient rule

Because quotients and products are closely linked, we can use the product rule to under-
stand how to take the derivative of a quotient. Let Q(x) be defined by Q(x) = f(x)/g(x),
where f and g are both differentiable functions. It turns out that Q is differentiable every-
where that g(x) # 0. We would like a formula for Q" in terms of f, g, f’, and g’. multiplying
both sides of the formula Q = f/g by g, we observe that

fx) =Q(x) - g(x).
Now we can use the product rule to differentiate f.
f(x) = Qx)g’(x) + g(x)Q"(x).
We want to know a formula for Q’, so we solve this equation for Q’(x).
Q'(x)g(x) = f'(x) = Qx)g"(x)
and dividing both sides by g(x), we have

£ - Qg (x)

Q)= g(x)

Finally, we recall that Q(x) = f—i; Substituting this expression in the preceding equation,

we have
R ACEE S TAC)
V0=
G ST
g(x) g(x)
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_9W)f'(x) - f(x)g'(x)
g(x)? '

This calculation gives us the quotient rule.

— Quotient Rule. ~
If f and g are differentiable functions, then their quotient Q(x) = % is also a dif-
ferentiable function for all x where g(x) # 0 and

y () f'(x) - f(x)g'(x)
Q) = L ).
g(x)
- J

As with the product rule, it can be helpful to think of the quotient rule verbally. If a function
Q is the quotient of a top function f and a bottom function g, then Q’ is given by “the bottom
times the derivative of the top, minus the top times the derivative of the bottom, all over the
bottom squared.”

Example 2.3.3 If Q(t) = sin(t)/2!, we call sin(t) the top function and 2 the bottom function.
By the quotient rule, Q’ is given by the bottom, 2t times the derivative of the top, cos(t),
minus the top, sin(t), times the derivative of the bottom, 2 In(2), all over the bottom squared,
(24)2. That is,
2t cos(t) — sin(t)2! In(2)

(2)? '

Q'(t) =

In this particular example, it is possible to simplify Q’(t) by removing a factor of 2! from
both the numerator and denominator, so that
cos(t) — sin(t) In(2)

2! ’

Q'(t) =

In general, we must be careful in doing any such simplification, as we don’t want to execute
the quotient rule correctly but then make an algebra error.

Activity 2.3.3. Use the quotient rule to answer each of the questions below. Through-
out, be sure to carefully label any derivative you find by name. That is, if you're given
a formula for f(x), clearly label the formula you find for f’(x). It is not necessary to
algebraically simplify any of the derivatives you compute.

a. Let r(z) = === Find 7'(2).

z4+1°

b. Leto(t) = =2 Find v'(t).

cos(t)+t2*

2
-2x-8
¢. Determine the slope of the tangent line to the curve R(x) = % at the
x —_—

point where x = 0.

d. When a camera flashes, the intensity I of light seen by the eye is given by the
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function 100t

I(t) = 7
where [ is measured in candles and f is measured in milliseconds. Compute
I'(0.5), I'(2), and I’(5); include appropriate units on each value; and discuss the

meaning of each.

2.3.3 Combining rules

In order to apply the derivative shortcut rules correctly we must recognize the fundamental
structure of a function.

Example 2.3.4 Determine the derivative of the function

2

f(X) = .X'SiI'I(X) + m

How do we decide which rules to apply? Our first task is to recognize the structure of the
function. This function f is a sum of two slightly less complicated functions, so we can apply
the sum rule? to get

z2

d
f'(x) = P [x sin(x) + o) 12
2

cos(x) +2

= % [x sin(x)] + % [

Now, the left-hand term above is a product, so the product rule is needed there, while the
right-hand term is a quotient, so the quotient rule is required. Applying these rules respec-
tively, we find that

(cos(x) +2)2x — x2(~sin(x))
(cos(x) + 2)?

2x cos(x) + 4x? + x? sin(x)

(cos(x) + 2)?

f/(x) = (xcos(x) + sin(x)) +

= x cos(x) + sin(x) +

Example 2.3.5 Differentiate
y-7Y
y2+1
The function s is a quotient of two simpler functions, so the quotient rule will be needed. To
begin, we set up the quotient rule and use the notation % to indicate the derivatives of the

s(y) =

numerator and denominator. Thus,
d d
W+ £y 7] -y 7 £ [y +1]
(yz + 1)2

s'(y) =

2When taking a derivative that involves the use of multiple derivative rules, it is often helpful to use the notation

% [ ] to wait to apply subsequent rules. This is demonstrated in each of the two examples presented here.
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Now, there remain two derivatives to calculate. The first one, % [y . 7V] calls for use of the

product rule, while the second, dd—y [ v+ 1] needs only the sum rule. Applying these rules,

we now have
(2 + DIy -7V In(7) + 7Y - 1] - y - 7/ [2y]

(y> +1)

While some simplification is possible, we are content to leave s’(y) in its current form.

s'(y) =

Success in applying derivative rules begins with recognizing the structure of the function,
followed by the careful and diligent application of the relevant derivative rules. The best
way to become proficient at this process is to do a large number of examples.

Activity 2.3.4. Use relevant derivative rules to answer each of the questions below.
Throughout, be sure to use proper notation and carefully label any derivative you
find by name.

a. Let f(r) = (57 + sin(r))(4" — 2 cos(r)). Find f'(r).

cos(t)
16 . 6t

c. Let g(z) = 327e* — 22 sin(z) + 5. Find ¢'(2).

b. Let p(t) =

. Find p’(t).

d. A moving particle has its position in feet at time ¢ in seconds given by the func-

tion s(t) = w Find the particle’s instantaneous velocity at the moment

t=1.

e. Suppose that f(x) and g(x) are differentiable functions and it is known that
f(3) = -2, f3) =793) =4 and g'3) = -1. If p(x) = f(x)- g(x) and

_f®) , ,
g(x) = W, calculate p’(3) and 4’(3).

As the algebraic complexity of the functions we are able to differentiate continues to increase,
itis important to remember that all of the derivative’s meaning continues to hold. Regardless
of the structure of the function f, the value of f’(a) tells us the instantaneous rate of change
of f with respect to x at the moment x = 4, as well as the slope of the tangentline to y = f(x)
at the point (a, f(a)).

2.3.4 Summary

e If a function is a sum, product, or quotient of simpler functions, then we can use the
sum, product, or quotient rules to differentiate it in terms of the simpler functions and
their derivatives.

® The product rule tells us that if P is a product of differentiable functions f and g ac-
cording to the rule P(x) = f(x)g(x), then

P'(x) = f(x)g'(x) + g(x) f'(x).
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* The quotient rule tells us that if Q is a quotient of differentiable functions f and g

according to the rule Q(x) = %, then
v 9@ f(x) — f(x)g'(x)
Q= g)? '

¢ Along with the constant multiple and sum rules, the product and quotient rules enable
us to compute the derivative of any function that consists of sums, constant multiples,
products, and quotients of basic functions. For instance, if F has the form

2a(x) — 5b(x)
F(x) = —————,
M= =)
then F is a quotient, in which the numerator is a sum of constant multiples and the de-
nominator is a product. This, the derivative of F can be found by applying the quotient

rule and then using the sum and constant multiple rules to differentiate the numerator
and the product rule to differentiate the denominator.

2.3.5 Exercises

1. Derivative of a basic product. Find the derivative of the function f(x), below. It may B8

be to your advantage to simplify first. WeBWork
flx)=x-13%

2. Derivative of a product. Find the derivative of the function f(x), below. It may be to R4
your advantage to simplify first. Weshr

) = (= V02"

3. Derivative of a quotient of linear functions. Find the derivative of the function z,

below. It may be to your advantage to simplify first. weaterk
2t +7
z =
8t +7
4. Derivative of a rational function. Find the derivative of the function h(r), below. It B8
may be to your advantage to simplify first. weatort
3
’
h(r) =
) 9r +13
5. Derivative of a product of trigonometric functions. Find the derivative of s(g) =
6 cos q sin q. WeBWork

6.  Derivative of a product of power and trigonmetric functions. Find the derivative of B8
f(x) = x> cosx -

7.  Derivative of a sum that involves a product. Find the derivative of h(t) = t sinf +tan B8

WeBWork

8.  Product and quotient rules with graphs. Let hi(x) = f(x) - g(x), and k(x) = f(x)/g(x). B8
Use the figures below to find the exact values of the indicated derivatives. stk
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B B

f(x) g(x)

A (1) =
B. k'(=2) =
9.  Product and quotient rules with given function values. Let F(4) = 4, F'(4) =5, H(4) =

N

WeBWork 4’ H/(4) — 5

A. If G(z) = F(z) - H(z), then G’(4) =

B. If G(w) = F(w)/H(w), then G’'(4) =
10. Let f and g be differentiable functions for which the following information is known:
f2)=5,9(2)==3,f'(2) = -1/2,4'(2) = 2.
a. Let 1 be the new function defined by the rule h(x) = g(x) - f(x). Determine /(2)
and h’(2).

b. Find an equation for the tangent line to y = h(x) at the point (2, 1(2)) (where & is
the function defined in (a)).

c. Let r be the function defined by the rule r(x) = %. Is r increasing, decreasing,
or neither at a = 2? Why?

d. Estimate the value of 7(2.06) (where r is the function defined in (c)) by using the
local linearization of r at the point (2, 7(2)).

11. Consider the functions r(t) = t' and s(t) = arccos(t), for which you are given the

facts that 7/(t) = t!(In(t) + 1) and s’(t) = — \/117 Do not be concerned with where these
derivative formulas come from. We restrict our interest in both functions to the domain
0<t<l.

a. Let w(t) = t! arccos(t). Determine w’(t).

b. Find an equation for the tangent line to y = w(t) at the point (%, w(%)).

c. Leto(t) = ﬁcﬁs(t) Is v increasing or decreasing at the instant t = 32 Why?
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13.
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Let functions p and g be the piecewise linear functions given by their respective graphs
in Figure 2.3.6. Use the graphs to answer the following questions.

a. Let r(x) = p(x) - g(x). Determine
r’(=2) and r’(0).

b. Are there values of x for which
r’(x) does not exist? If so, which
values, and why?

c. Find an equation for the tangent
line to y = r(x) at the point (2, r(2)).

d. Let z(x) = %. Determine z’(0)

and z/(2). q ol

e. Are there values of x for which 34
z’(x) does not exist? If so, which
values, and why?

Figure 2.3.6: The graphs of p (in blue)
and g (in green).

A farmer with large land holdings has historically grown a wide variety of crops. With
the price of ethanol fuel rising, he decides that it would be prudent to devote more and
more of his acreage to producing corn. As he grows more and more corn, he learns
efficiencies that increase his yield per acre. In the present year, he used 7000 acres of
his land to grow corn, and that land had an average yield of 170 bushels per acre. At
the current time, he plans to increase his number of acres devoted to growing corn at
a rate of 600 acres/year, and he expects that right now his average yield is increasing
at a rate of 8 bushels per acre per year. Use this information to answer the following
questions.

a. Say that the present yearis ¢ = 0, that A(#) denotes the number of acres the farmer
devotes to growing corn in year ¢, Y(t) represents the average yield in year ¢ (mea-
sured in bushels per acre), and C(t) is the total number of bushels of corn the
farmer produces. What is the formula for C(#) in terms of A(t) and Y(¢)? Why?

b. What is the value of C(0)? What does it measure?

c. Write an expression for C’(t) in terms of A(t), A’(t), Y(¢), and Y’(t). Explain your
thinking.

d. What is the value of C’(0)? What does it measure?
e. Based on the given information and your work above, estimate the value of C(1).

Let f(v) be the gas consumption (in liters /km) of a car going at velocity v (in km/hour).
In other words, f(v) tells you how many liters of gas the car uses to go one kilometer
if it is traveling at v kilometers per hour. In addition, suppose that f(80) = 0.05 and
£'(80) = 0.0004.

a. Let g(v) be the distance the same car goes on one liter of gas at velocity v. What
is the relationship between f(v) and g(v)? Hence find ¢(80) and ¢’(80).
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b. Let h(v) be the gas consumption in liters per hour of a car going at velocity v. In
other words, h(v) tells you how many liters of gas the car uses in one hour if it
is going at velocity v. What is the algebraic relationship between h(v) and f(v)?
Hence find /(80) and /’(80).

¢. How would you explain the practical meaning of these function and derivative
values to a driver who knows no calculus? Include units on each of the function
and derivative values you discuss in your response.
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2.4 Derivatives of other trigonometric functions

2.4 Derivatives of other trigonometric functions

Motivating Questions

* What are the derivatives of the tangent, cotangent, secant, and cosecant functions?

¢ How do the derivatives of tan(x), cot(x), sec(x), and csc(x) combine with other de-
rivative rules we have developed to expand the library of functions we can quickly
differentiate?

One of the powerful themes in trigonometry comes from a very simple idea: locating a point
on the unit circle.

Figure 2.4.1: The unit circle and the definition of the sine and cosine functions.

Because each angle 0 in standard position corresponds to one and only one point (x, ) on
the unit circle, the x- and y-coordinates of this point are each functions of 0. In fact, this is the
very definition of cos(0) and sin(0): cos(6) is the x-coordinate of the point on the unit circle
corresponding to the angle 6, and sin(0) is the y-coordinate. From this simple definition,
all of trigonometry is founded. For instance, the Fundamental Trigonometric Identity,

sin?(0) + cos?(0) = 1,

is a restatement of the Pythagorean Theorem, applied to the right triangle shown in Fig-
ure 2.4.1.

There are four other trigonometric functions, each defined in terms of the sine and / or cosine
functions.

¢ The tangent function is defined by tan(0) = Zl)r;((g)),
e the cotangent function is its reciprocal: cot(0) = Z?If((g; .
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1 .
cos(0)’

¢ The secant function is the reciprocal of the cosine function, sec(6) =

¢ and the cosecant function is the reciprocal of the sine function, csc(0) = si%(e).
These six trigonometric functions together offer us a wide range of flexibility in problems
involving right triangles.

Because we know the derivatives of the sine and cosine function, we can now develop short-
cut differentiation rules for the tangent, cotangent, secant, and cosecant functions. In this
section’s preview activity, we work through the steps to find the derivative of y = tan(x).

Preview Activity 2.4.1. Consider the function f(x) = tan(x), and remember that

tan(x) = :g;g)) )

a. What is the domain of f?

b. Use the quotient rule to show that one expression for f’(x) is

cos(x) cos(x) + sin(x) sin(x)
cos2(x)

fix) =

c. Whatis the Fundamental Trigonometric Identity? How can this identity be used
to find a simpler form for f’(x)?

d. Recall that sec(x) = Cosl(x). How can we express f’(x) in terms of the secant
function?

e. For what values of x is f’(x) defined? How does this set compare to the domain
of f?

2.4.1 Derivatives of the cotangent, secant, and cosecant functions

In Preview Activity 2.4.1, we found that the derivative of the tangent function can be ex-
pressed in several ways, but most simply in terms of the secant function. Next, we develop
the derivative of the cotangent function.

cos(x)
sin(x)

Let g(x) = cot(x). To find g’(x), we observe that g(x) =
Hence

and apply the quotient rule.

sin(x)(—sin(x)) — cos(x) cos(x)

g'(x) =

sin?(x)
_ sin®(x) + cos?(x)

sin?(x)

By the Fundamental Trigonometric Identity, we see that g’(x) = and recalling that

smz( )’

csc(x) = , it follows that we can express g’ by the rule

sm(x
g'(x) = —csc?(x).
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2.4 Derivatives of other trigonometric functions

Note that neither g nor g’ is defined when sin(x) = 0, which occurs at every integer multiple
of 7. Hence we have the following rule.

Cotangent Function.

For all real numbers x such that x # k7t, where k =0, +1,+2,.. .,

%[cot(x)] = —csc?(x).

Notice that the derivative of the cotangent function is very similar to the derivative of the
tangent function we discovered in Preview Activity 2.4.1.

Tangent Function.

(2k+1)m
(i

For all real numbers x such that x ,wherek = +1,+2,...,

% [tan(x)] = sec?(x).

In the next two activities, we develop the rules for differentiating the secant and cosecant
functions.

Activity 2.4.2. Let h(x) = sec(x) and recall that sec(x) = #(x)
a. What is the domain of h?

b. Use the quotient rule to develop a formula for 1’(x) that is expressed completely
in terms of sin(x) and cos(x).

c. How can you use other relationships among trigonometric functions to write
h’(x) only in terms of tan(x) and sec(x)?

d. What is the domain of #’? How does this compare to the domain of /?

Activity 2.4.3. Let p(x) = csc(x) and recall that csc(x) = =

sin(x) *

a. What is the domain of p?

b. Use the quotient rule to develop a formula for p’(x) that is expressed completely
in terms of sin(x) and cos(x).

c. How can you use other relationships among trigonometric functions to write
p’(x) only in terms of cot(x) and csc(x)?

d. What is the domain of p’? How does this compare to the domain of p?

Using the quotient rule we have determined the derivatives of the tangent, cotangent, secant,
and cosecant functions, expanding our overall library of functions we can differentiate. Ob-
serve that just as the derivative of any polynomial function is a polynomial, and the deriv-
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ative of any exponential function is another exponential function, so it is that the derivative
of any basic trigonometric function is another function that consists of basic trigonometric
functions. This makes sense because all trigonometric functions are periodic, and hence

their derivatives will be periodic, too.

The derivative retains all of its fundamental meaning as an instantaneous rate of change and

as the slope of the tangent line to the function under consideration.

Activity 2.4.4. Answer each of the following questions. Where a derivative is re-
quested, be sure to label the derivative function with its name using proper notation.

a. Let f(x) = 5sec(x) — 2 csc(x). Find the slope of the tangent line to f at the point

where x = %

b. Let p(z) = z%sec(z) — z cot(z). Find the instantaneous rate of change of p at the

point where z = &

T
Let h(t) = tan(t) _ 2¢! cos(t). Find h'(t)
. Le = a1 cos(t). .
rsec(r) . ,
. Letg(r) = A Find g'(r).

. When a mass hangs from a spring and is set in motion, the object’s position

oscillates in a way that the size of the oscillations decrease. This is usually called
a damped oscillation. Suppose that for a particular object, its displacement from
equilibrium (where the object sits at rest) is modeled by the function

0]

Assume that s is measured in inches and ¢ in seconds. Sketch a graph of this
function for t > 0 to see how it represents the situation described. Then compute
ds/dt, state the units on this function, and explain what it tells you about the
object’s motion. Finally, compute and interpret s’(2).

2.4.2 Summary
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® The derivatives of the other four trigonometric functions are

%[tan(x)] = sec?(x), %[cot(x)] = —csc?(x),

%[sec(x)] = sec(x) tan(x), and %[csc(x)] = —csc(x) cot(x).

Each derivative exists and is defined on the same domain as the original function. For
example, both the tangent function and its derivative are defined for all real numbers
x such that x # %”, where k = +1,+2,....



2.4 Derivatives of other trigonometric functions

¢ The four rules for the derivatives of the tangent, cotangent, secant, and cosecant can be
used along with the rules for power functions, exponential functions, and the sine and
cosine, as well as the sum, constant multiple, product, and quotient rules, to quickly
differentiate a wide range of different functions.

2.4.3 Exercises

A sum and product involving tan(x). Find the derivative of h(t) = t tant + cos ¢

5tan(x)
X

A quotient involving tan(t). Let f(x) = . Find f’(x) and f’(4).

tan(x) — 2
sec(x)
2x? tan(x)
sec(x)

A quotient of trigonometric functions. Let f(x) = . Find f’(x) and f’(1).

A quotient that involves a product. Let f(x) = . Find f’(x) and f’(4).
Finding a tangent line equation. Find the equation of the tangent line to the curve
y = 3tanx at the point (7/4, 3). The equation of this tangent line can be written in the
form y = mx + b. Find m and b.

An object moving vertically has its height at time ¢ (measured in feet, with time in

2 cos(t)
3+ =7

a. What is the object’s instantaneous velocity when t = 2?

seconds) given by the function h(t) =

b. What is the object’s acceleration at the instant t = 2?

c. Describe in everyday language the behavior of the object at the instant ¢ = 2.
Let f(x) = sin(x) cot(x).
a. Use the product rule to find f’(x).

b. True or false: for all real numbers x, f(x) = cos(x).

c. Explain why the function that you found in (a) is almost the opposite of the sine
function, but not quite. (Hint: convert all of the trigonometric functions in (a) to
sines and cosines, and work to simplify. Think carefully about the domain of f
and the domain of f’.)

Let p(z) be given by the rule

p(z) = z tan(z)

= =20 30741
zZsec(z) +1 ¢

a. Determine p’(z).
b. Find an equation for the tangent line to p at the point where z = 0.

c. Atz =0, is p increasing, decreasing, or neither? Why?
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Chapter 2 Computing Derivatives

2.5 The chain rule

Motivating Questions

e What is a composite function and how do we recognize its structure algebraically?

¢ Given a composite function C(x) = f(g(x)) that is built from differentiable functions
f and g, how do we compute C’(x) in terms of f, g, f’, and g’? What is the statement
of the Chain Rule?

In addition to learning how to differentiate a variety of basic functions, we have also been
developing our ability to use rules to differentiate certain algebraic combinations of them.

Example 2.5.1 State the rule(s) to find the derivative of each of the following combinations
of f(x) = sin(x) and g(x) = x*
s(x) = 3x? — 5sin(x),

p(x) = x?sin(x), and

sin(x)

q(x) = —

Solution. Finding s’ uses the sum and constant multiple rules, because s(x) = 3g(x) —

5f(x). Determining p’ requires the product rule, because p(x) = g(x) - f(x). To calculate g4’
_ [
~ 9k

we use the quotient rule, because g(x)

There is one more natural way to combine basic functions algebraically, and that is by com-
posing them. For instance, let’s consider the function

C(x) = sin(x?),

and observe that any input x passes through a chain of functions. In the process that defines
the function C(x), x is first squared, and then the sine of the result is taken. Using an arrow
diagram,

x — x* — sin(x?).

In terms of the elementary functions f and g, we observe that x is the input for the function
g, and the result is used as the input for f. We write

C(x) = f(g(x)) = sin(x?)

and say that C is the composition of f and g. We will refer to g, the function that is first
applied to x, as the inner function, while f, the function that is applied to the result, is the
outer function.

Given a composite function C(x) = f(g(x)) thatis built from differentiable functions f and g,
how do we compute C’(x) intermsof f, g, f’, and g’? In the same way that the rate of change
of a product of two functions, p(x) = f(x) - g(x), depends on the behavior of both f and g, it
makes sense intuitively that the rate of change of a composite function C(x) = f(g(x)) will
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2.5 The chain rule

also depend on some combination of f and g and their derivatives. The rule that describes
how to compute C’ in terms of f and g and their derivatives is called the chain rule.

But before we can learn what the chain rule says and why it works, we first need to be
comfortable decomposing composite functions so that we can correctly identify the inner
and outer functions, as we did in the example above with C(x) = sin(x?).

Preview Activity 2.5.1. For each function given below, identify its fundamental alge-
braic structure. In particular, is the given function a sum, product, quotient, or com-
position of basic functions? If the function is a composition of basic functions, state a
formula for the inner function g and the outer function f so that the overall compos-
ite function can be written in the form f(g(x)). If the function is a sum, product, or
quotient of basic functions, use the appropriate rule to determine its derivative.

a. h(x) = tan(2%) d. m(x) = etan®)
b. p(x) = 2" tan(x) e. w(x) = +x + tan(x)
c. r(x) = (tan(x))? f. z(x) = y/tan(x)

2.5.1 The chain rule

Often a composite function cannot be written in an alternate algebraic form. For instance,
the function C(x) = sin(x?) cannot be expanded or otherwise rewritten, so it presents no al-
ternate approaches to taking the derivative. But some composite functions can be expanded
or simplified, and these provide a way to explore how the chain rule works.

Example 2.5.2 Let f(x) = —4x +7 and g(x) = 3x — 5. Determine a formula for C(x) = f(g(x))
and compute C’(x). How is C’ related to f and g and their derivatives?

Solution. By the rules given for f and g,

C(x) = f(g(x))
f(3x = 5)
—4(B8x —-5)+7
-12x+20+7
= —12x +27.

Thus, C’'(x) = —12. Noting that f’(x) = —4 and g’(x) = 3, we observe that C’ appears to be
the product of f” and g’.

It may seem that Example 2.5.2 is too elementary to illustrate how to differentiate a composite
fuction. Linear functions are the simplest of all functions, and composing linear functions
yields another linear function. While this example does not illustrate the full complexity of
a composition of nonlinear functions, at the same time we remember that any differentiable
function is locally linear, and thus any function with a derivative behaves like a line when
viewed up close. The fact that the derivatives of the linear functions f and g are multiplied
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to find the derivative of their composition turns out to be a key insight.

We now consider a composition involving a nonlinear function.

Example 2.5.3 Let C(x) = sin(2x). Use the double angle identity to rewrite C as a product of
basic functions, and use the product rule to find C’. Rewrite C’ in the simplest form possible.

Solution. Using the double angle identity for the sine function, we write

C(x) = sin(2x) = 2sin(x) cos(x).

Applying the product rule and simplifying, we find

C’(x) = 2 sin(x)(- sin(x)) + cos(x)(2 cos(x)) = 2(cos*(x) — sin(x)).

Next, we recall that the double angle identity for the cosine,

cos(2x) = cos?(x) — sin?(x).

Substituting this result into our expression for C’(x), we now have that
C’(x) = 2 cos(2x).

In Example 2.5.3, if we let g(x) = 2x and f(x) = sin(x), we observe that C(x) = f(g(x)). Now,
g’(x) =2and f’(x) = cos(x), so we can view the structure of C’(x) as

C'(x) =2cos(2x) = g'(x) f'(g(x)).

In this example, as in the example involving linear functions, we see that the derivative of
the composite function C(x) = f(g(x)) is found by multiplying the derivatives of f and g,
but with f’ evaluated at g(x).

It makes sense intuitively that these two quantities are involved in the rate of change of a
composite function: if we ask how fast C is changing at a given x value, it clearly matters
how fast g is changing at x, as well as how fast f is changing at the value of g(x). It turns
out that this structure holds for all differentiable functions' as is stated in the Chain Rule.

Chain Rule.

If g is differentiable at x and f is differentiable at g(x), then the composite function
C defined by C(x) = f(g(x)) is differentiable at x and

C'(x) = f'(g(x)g’(x).

As with the product and quotient rules, it is often helpful to think verbally about what the
chain rule says: “If C is a composite function defined by an outer function f and an inner
function g, then C’ is given by the derivative of the outer function evaluated at the inner
function, times the derivative of the inner function.”

Like other differentiation rules, the Chain Rule can be proved formally using the limit definition of the deriv-
ative.
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2.5 The chain rule

It is helpful to identify clearly the inner function g and outer function f, compute their
derivatives individually, and then put all of the pieces together by the chain rule.

Example 2.5.4 Determine the derivative of the function

r(x) = (tan(x))%.

Solution. The function r is composite, with inner function g(x) = tan(x) and outer function
f(x) = x%. Organizing the key information involving f, g, and their derivatives, we have

fx) =2 g(x) = tan(x)
f(x) =2x g'(x) = sec?(x)
f(g(x)) = 2tan(x)

Applying the chain rule, we find that

F(x) = f(g(0)g'(x) = 2 tan(x) sec*(x).

As a side note, we remark that r(x) is usually written as tan?(x). This is common notation for
powers of trigonometric functions: cos*(x), sin®(x), and sec?(x) are all composite functions,
with the outer function a power function and the inner function a trigonometric one.

Activity 2.5.2. For each function given below, identify an inner function g and outer
function f to write the function in the form f(g(x)). Determine f’(x), g’(x), and
f’(g(x)), and then apply the chain rule to determine the derivative of the given func-
tion.

a. h(x) = cos(x*) d. z(x) = cot>(x)
b. p(x) = 4/tan(x)
c. s(x) =2sin@) e. m(x) = (sec(x) + e¥)°

2.5.2 Using multiple rules simultaneously

The chain rule now joins the sum, constant multiple, product, and quotient rules in our
collection of techniques for finding the derivative of a function through understanding its
algebraic structure and the basic functions that constitute it. It takes practice to get comfort-
able applying multiple rules to differentiate a single function, but using proper notation and
taking a few extra steps will help.

Example 2.5.5 Find a formula for the derivative of /i(f) = 32 sec*(t).

Solution. We first observe that / is the product of two functions: h(t) = a(t) - b(t), where
a(t) = 3t*+2t and b(t) = sec*(t). We will need to use the product rule to differentiate #. And
because a and b are composite functions, we will need the chain rule. We therefore begin by
computing a’(t) and b’(t).

Writing a(t) = f(g(t)) = 3""*%, and finding the derivatives of f and g, we have
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f(t)=3 g(t) =2 +2t
f'(t) =3"In(3) g(t)=2t+2
f(g()) =3 In(3)

Thus, by the chain rule, it follows that a’(¢) = f/(g(t))g’(t) = 32 In(3)(2¢ + 2).
Turning next to b, we write b(t) = r(s(t)) = sec*(t) and find the derivatives of r and s.
r(t) =t s(t) = sec(t)

r'(t) = 413 s’(t) = sec(t) tan(t)
r'(5(t)) = 4sec3(t)
By the chain rule,

b'(t) = r'(s(t))s’(t) = 4sec3(t) sec(t) tan(t) = 4 sec?(t) tan(t).

Now we are finally ready to compute the derivative of the function . Recalling that h(t) =

31+2t sec(t), by the product rule we have

1(p) — t2+2ti 4 4 i 242t
h(t)=3 T [sec*(t)] + sec (t)dt [3 ].

From our work above with 2 and b, we know the derivatives of 342t and sec*(t), and there-
fore
W(t) = 372 4 sect(t) tan(t) + sect(+)3"+2 In(3)(2t + 2).

Activity 2.5.3. For each of the following functions, find the function’s derivative. State
the rule(s) you use, label relevant derivatives appropriately, and be sure to clearly
identify your overall answer.

a. P(I’) = 4Vr6 + 2e" d. S(Z) = 222 sec(z)
b. m(v) = sin(v?) cos(v?)
c. hy) = cc;ig/lfly) e. c(x) = sin(e*’)

The chain rule now adds substantially to our ability to compute derivatives. Whether we
are finding the equation of the tangent line to a curve, the instantaneous velocity of a mov-
ing particle, or the instantaneous rate of change of a certain quantity, if the function under
consideration is a composition, the chain rule is indispensable.

Activity 2.5.4. Use known derivative rules, including the chain rule, as needed to
answer each of the following questions.

a. Find an equation for the tangent line to the curve y = Ve* + 3 at the point where
x=0.
1 L . . . .
b. If s(t) = 1P represents the position function of a particle moving horizon-
tally along an axis at time t (where s is measured in inches and t in seconds),
find the particle’s instantaneous velocity at t = 1. Is the particle moving to the
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left or right at that instant?

c. At sea level, air pressure is 30 inches of mercury. At an altitude of & feet above
sea level, the air pressure, P, in inches of mercury, is given by the function
P = 30e~0:0000323h " Compute dP/dh and explain what this derivative function
tells you about air pressure, including a discussion of the units on dP/dh. In
addition, determine how fast the air pressure is changing for a pilot of a small
plane passing through an altitude of 1000 feet.

d. Suppose that f(x) and g(x) are differentiable functions and that the following
information about them is known:

x  f(x) f'x) g(x) g'(x)
-1 2 -5 -3 4
2 3 4 -1 2

Table 2.5.6: Data for functions f and g.

If C(x) is a function given by the formula f(g(x)), determine C’(2). In addition,
if D(x) is the function f(f(x)), find D’(-1).

2.5.3 The composite version of basic function rules

As we gain more experience with differention, we will become more comfortable in simply
writing down the derivative without taking multiple steps. This is particularly simple when
the inner function is linear, since the derivative of a linear function is a constant.

Example 2.5.7 Use the chain rule to differentiate each of the following composite functions
whose inside function is linear:

dd—x [(5x +7)1°] =10(5x +7)° - 5,

dd_x [tan(17x)] = 17 sec*(17x), and

% [e7] = —3e73".

More generally, following is an excellent exercise for getting comfortable with the derivative
rules. Write down a list of all the basic functions whose derivatives we know, and list the
derivatives. Then write a composite function with the inner function being an unknown
function u(x) and the outer function being a basic function. Finally, write the chain rule for
the composite function. The following example illustrates this for two different functions.

Example 2.5.8 To determine
d. .
—lsin(u(v)],

where u is a differentiable function of x, we use the chain rule with the sine function as the
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outer function. Applying the chain rule, we find that

%[sin(u(x))] = cos(u(x)) - u’(x).

This rule is analogous to the basic derivative rule that 4 2z [sin(x)] = cos(x).

Similarly, since - 4 [4*] = a* In(a), it follows by the chain rule that
d u(x) u(x) ’
%[a 1 =a""1In(a) - u'(x).

This rule is analogous to the basic derivative rule that 4 Zz[a¥] = a* In(a).

2.5.4 Summary

* A composite function is one where the input variable x first passes through one func-
tion, and then the resulting output passes through another. For example, the function
h(x) = 25n(*) jg composite since x — sin(x) — — 2sin(x),

¢ Given a composite function C(x) = f(g(x)) where f and g are differentiable functions,
the chain rule tells us that

C'(x) = f'(g(x))g’ (x).

2.5.5 Exercises

1.  Mixing rules: chain, product, sum. Find the derivative of f(x) = ¢ (x? + 7%).

WeBWorK

®-§ 2. Mixing rules: chain and product. Find the derivative of v(t) = toe~¢t. Assume that c
estrt is a constant.

3.  Using the chain rule repeatedly. Find the derivative of y = Ve=5* +9.

WeBWorK

4. Derivative involving arbitrary constants a and b. Find the derivative of the function
e f(x) = axe~P**12, Assume that a and b are constants.

5. Chain rule with graphs. Use the graph below to find exact values of the indicated

me derivatives, or state that they do not exist. If a derivative does not exist, enter dne in the
answer blank. The graph of f(x) is black and has a sharp corner at x = 2. The graph of
g(x) is blue.
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19
-
-]

iy

1

-1
Let h(x) = f(g(x)). Find h’(1), h’(2), and h’(3) or explain why they do not exist.

Chain rule with function values. Given F(4) = 1,F'(4) = 5,F(5) = 4,F'(5) = 6 and
G(1)=3,G'(1) =4,G4) =5,G'(4) = 6, find each of the following. wetork

H(4) if H(x) = F(G(x))
H'(4) if H(x) = F(G(x))
H(4) if H(x) = G(F(x))

O 0 = >

H’(4) if H(x) = G(F(x))
E. H'(4)if H(x) = F(x)/G(x)

A product involving a composite function. Find the derivative of f(x) = 2x sin(6x).

Consider the basic functions f(x) = x* and g(x) = sin(x).
a. Let h(x) = f(g(x)). Find the exact instantaneous rate of change of / at the point
where x = 7.

b. Which function is changing most rapidly at x = 0.25: h(x) = f(g(x)) or r(x) =
g9(f(x))? Why?

c. Let h(x) = f(g(x)) and r(x) = g(f(x)). Which of these functions has a derivative
that is periodic? Why?

Let u(x) be a differentiable function. For each of the following functions, determine the
derivative. Each response will involve u and/or u’.

a. p(x)=e"® d. s(x) = u(cot(x))
b. g(x) = u(e®) e. a(x) = u(x?)
c. r(x) = cot(u(x)) f. b(x) = u*(x)
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10. Let functions p and g be the piecewise linear functions given by their respective graphs

11.

128

in Figure 2.5.9. Use the graphs to answer the following questions.

Figure 2.5.9: The graphs of p (in blue) and g (in green).

. Let C(x) = p(q(x)). Determine C’(0) and C’(3).
b. Find a value of x for which C’(x) does not exist. Explain your thinking.

c. Let Y(x) = g(g(x)) and Z(x) = q(p(x)). Determine Y’(-2) and Z’(0).

If a spherical tank of radius 4 feet has & feet of water present in the tank, then the volume
of water in the tank is given by the formula

V= %hz(lz —h).

. At what instantaneous rate is the volume of water in the tank changing with re-

spect to the height of the water at the instant # = 1? What are the units on this
quantity?

. Now suppose that the height of water in the tank is being regulated by an inflow

and outflow (e.g., a faucet and a drain) so that the height of the water at time ¢ is
given by the rule h(t) = sin(ntt) + 1, where ¢ is measured in hours (and # is still
measured in feet). At what rate is the height of the water changing with respect
to time at the instant ¢ = 2?

. Continuing under the assumptions in (b), at what instantaneous rate is the vol-

ume of water in the tank changing with respect to time at the instant ¢t = 2?

. What are the main differences between the rates found in (a) and (c)? Include a

discussion of the relevant units.
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2.6 Derivatives of Inverse Functions

Motivating Questions

¢ What is the derivative of the natural logarithm function?
* What are the derivatives of the inverse trigonometric functions arcsin(x) and arctan(x)?

e If g is the inverse of a differentiable function f, how is g’ computed in terms of f, f’,
and g?

Much of mathematics centers on the notion of function. Indeed, throughout our study of cal-
culus, we are investigating the behavior of functions, with particular emphasis on how fast
the output of the function changes in response to changes in the input. Because each func-
tion represents a process, a natural question to ask is whether or not the particular process
can be reversed. That is, if we know the output that results from the function, can we deter-
mine the input that led to it? And if we know how fast a particular process is changing, can
we determine how fast the inverse process is changing?

One of the most important functions in all of mathematics is the natural exponential function
f(x) = e*. Its inverse, the natural logarithm, g(x) = In(x), is similarly important. One of our
goals in this section is to learn how to differentiate the logarithm function. First, we review
some of the basic concepts surrounding functions and their inverses.

Preview Activity 2.6.1. The equation y = g(x — 32) relates a temperature given in x
degrees Fahrenheit to the corresponding temperature y measured in degrees Celcius.

a. Solve the equation y = g(x — 32) for x to write x (Fahrenheit temperature) in
terms of y (Celcius temperature).

b. Let C(x) = g—’(x — 32) be the function that takes a Fahrenheit temperature as
input and produces the Celcius temperature as output. In addition, let F(y)
be the function that converts a temperature given in y degrees Celcius to the
temperature F(y) measured in degrees Fahrenheit. Use your work in (a) to write
a formula for F(y).

c. Next consider the new function defined by p(x) = F(C(x)). Use the formulas
for F and C to determine an expression for p(x) and simplify this expression as
much as possible. What do you observe?

d. Now, let 7(y) = C(F(y)). Use the formulas for F and C to determine an expres-
sion for r(y) and simplify this expression as much as possible. What do you
observe?

e. What is the value of C’(x)? of F’(y)? How do these values appear to be related?
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2.6.1 Basic facts about inverse functions

A function f : A — B is a rule that associates each element in the set A to one and only
one element in the set B. We call A the domain of f and B the codomain of f. If there exists
a function g : B — A such that g(f(a)) = a for every possible choice of a in the set A and
f(g(b)) = b for every b in the set B, then we say that g is the inverse of f.

We often use the notation f~! (read “ f-inverse”) to denote the inverse of f. The inverse
function undoes the work of f. Indeed, if y = f(x), then

i) = @) =x.

Thus, the equations y = f(x) and x = f~(y) say the same thing. The only difference be-
tween the two equations is one of perspective — one is solved for x, while the other is solved
for y.

Here we briefly remind ourselves of some key facts about inverse functions.

Note 2.6.1 For a function f : A — B,

* f has an inverse if and only if f is one-to-one ' and onto 2;

e provided f~! exists, the domain of f~! is the codomain of f, and the codomain of f~!
is the domain of f;

e f71(f(x)) = x for every x in the domain of f and f(f~'(y)) = y for every y in the
codomain of f;

e y = f(x)ifand only if x = f‘l(y)-

The last fact reveals a special relationship between the graphs of f and f~!. If a point (x, )
that lies on the graph of y = f(x), then it is also true that x = f~!(y), which means that
the point (y, x) lies on the graph of f~!. This shows us that the graphs of f and f~! are
the reflections of each other across the line y = x, because this reflection is precisely the
geometric action that swaps the coordinates in an ordered pair. In Figure 2.6.2, we see this
illustrated by the function y = f(x) = 2* and its inverse, with the points (-1, %) and (%, -1)
highlighting the reflection of the curves across y = x. To close our review of important
facts about inverses, we recall that the natural exponential function y = f(x) = e¢* has an
inverse function, namely the natural logarithm, x = f~1(y) = In(y). Thus, writing y = e* is
interchangeable with x = In(y), plus In(e¥) = x for every real number x and e"™¥) = y for
every positive real number y.

2.6.2 The derivative of the natural logarithm function

In what follows, we find a formula for the derivative of g(x) = In(x). To do so, we take
advantage of the fact that we know the derivative of the natural exponential function, the
inverse of g. In particular, we know that writing g(x) = In(x) is equivalent to writing /() =

1A function f is one-to-one provided that no two distinct inputs lead to the same output.
2A function f is onto provided that every possible element of the codomain can be realized as an output of the
function for some choice of input from the domain.
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Figure 2.6.2: A graph of a function y = f(x) along with its inverse, y = f~!(x).
x. Now we differentiate both sides of this equation and observe that
d
= [eg(")] = —[x].

The righthand side is simply 1; by applying the chain rule to the left side, we find that

e7Wyg'(x) = 1.

Next we solve for g’(x), to get

bon 1
g =—5
Finally, we recall that g(x) = In(x), so e/ (@) = ¢In(™) = x and thus
yon 1
g =
Natural Logarithm.
( For all positive real numbers x, %[hl(x)] = % ]

This rule for the natural logarithm function now joins our list of basic derivative rules. Note
that this rule applies only to positive values of x, as these are the only values for which In(x)
is defined.

Also notice that for the first time in our work, differentiating a basic function of a particular
type has led to a function of a very different nature: the derivative of the natural logarithm
is not another logarithm, nor even an exponential function, but rather a rational one.
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Chapter 2 Computing Derivatives

Derivatives of logarithms may now be computed in concert with all of the rules known to
date. For instance, if f(t) = In(t? + 1), then by the chain rule, f'(t) = = - 2¢.

241
There are interesting connections between the graphs of f(x) = ¢* and f~!(x) = In(x).

In Figure 2.6.3, we are reminded that
since the natural exponential function
has the property that its derivative is it-
self, the slope of the tangent to y = e* is
equal to the height of the curve at that
point. For instance, at the point A =
(In(0.5), 0.5), the slope of the tangent line
ismy = 0.5,and at B = (In(5), 5), the tan-
gent line’s slope is mp = 5.

Atthe corresponding points A” and B’ on
the graph of the natural logarithm func-
tion (which come from reflecting A and
B across the line y = x), we know that
the slope of the tangent line is the rec-
iprocal of the x-coordinate of the point
(since %[ln(x)] = %). Thus, at A’ =

(0.5,In(0.5)), we have ma = 0173 =2,and

at B’ = (5,In(5)), mp = 3. Figure 2.6.3: A graph of the function y = ¢*
along with its inverse, y = In(x), where both
functions are viewed using the input variable
x.

In particular, we observe that m4 = mLA and mp = mLB This is not a coincidence, but in fact
holds for any curve y = f(x) and its inverse, provided the inverse exists. This is due to the
reflection across y = x. It changes the roles of x and y, thus reversing the rise and run, so
the slope of the inverse function at the reflected point is the reciprocal of the slope of the
original function.

Activity 2.6.2. For each function given below, find its derivative.
a. h(x) = x%In(x) d. z(x) = tan(In(x))
— In(®)
b. p(t) = 73
c. s(y) = In(cos(y) +2) e. m(z) = In(In(z))

2.6.3 Inverse trigonometric functions and their derivatives

Trigonometric functions are periodic, so they fail to be one-to-one, and thus do not have
inverse functions. However, we can restrict the domain of each trigonometric function so
that it is one-to-one on that domain.

For instance, consider the sine function on the domain [-7, %] Because no output of the

sine function is repeated on this interval, the function is one-to-one and thus has an inverse.
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2.6 Derivatives of Inverse Functions

Thus, the function f(x) = sin(x) with [-%, 5] and codomain [~1, 1] has an inverse function
f~! such that

L1 - [-

N

Tt
31

We call f~! the arcsine (or inverse sine)
function and write f~'(y) = arcsin(y). It
is especially important to remember that

y =sin(x) and x = arcsin(y)

say the same thing. “The arcsine of y”
means “the angle whose sine is y.” For ex-
ample, arcsin(%) = % means that ¥ is the
angle whose sine is %, which is equivalent
to writing sin(%) = %

Next, we determine the derivative of the
arcsine function. Letting h(x) = arcsin(x),
our goalis to find h’(x). Since h(x) is the an-
gle whose sine is x, it is equivalent to write

sin(h(x)) = x. Figure 2.6.4: A graph of f(x) = sin(x) (in

blue), restricted to the domain [-7F, 7],
along with its inverse, f~!(x) = arcsin(x)
(in magenta).

Differentiating both sides of the previous equation, we have

d . _d
~lsin(h(x)] = 4[]
The righthand side is simply 1, and by applying the chain rule applied to the left side,

cos(h(x))h'(x) = 1.

Solving for h’(x), it follows that

reon 1
Wx) = cos(h(x))’

Finally, we recall that i(x) = arcsin(x), so the denominator of /’(x) is the function cos(arcsin(x)),
or in other words, “the cosine of the angle whose sine is x.” A bit of right triangle trigonom-
etry allows us to simplify this expression considerably.
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Let’s say that 6 = arcsin(x), so that 6 is the angle
whose sine is x. We can picture 0 as an angle in a right
triangle with hypotenuse 1 and a vertical leg of length
x, as shown in Figure 2.6.5. The horizontal leg must be

V1 — x2, by the Pythagorean Theorem.

Now, because 6 = arcsin(x), the expression for
cos(arcsin(x)) is equivalent to cos(8). From the figure,

cos(arcsin(x)) = cos(0) = V1 — x2.

Substituting this expression into our formula, h’(x) =
1

M , We have now shown that

1

1-—x2

h(x)=

0
V1—x2

Figure 2.6.5: The right triangle
that corresponds to the angle
6 = arcsin(x).

Inverse sine.

For all real numbers x such that -1 < x < 1,

i [arcsin(x)] = !

dx 1-x2

derivative of the inverse tangent function.

function evaluated at r(x).

sides of the triangle?

for #’(x).

Activity 2.6.3. The following prompts in this activity will lead you to develop the
a. Let r(x) = arctan(x). Use the relationship between the arctangent and tangent
functions to rewrite this equation using only the tangent function.

b. Differentiate both sides of the equation you found in (a). Solve the resulting
equation for r’(x), writing r’(x) as simply as possible in terms of a trigonometric

c. Recall that r(x) = arctan(x). Update your expression for ’(x) so that it only
involves trigonometric functions and the independent variable x.

d. Introduce a right triangle with angle 0 so that 0 = arctan(x). What are the three

e. In terms of only x and 1, what is the value of cos(arctan(x))?

f. Use the results of your work above to find an expression involving only 1 and x

While derivatives for other inverse trigonometric functions can be established similarly, for
now we limit ourselves to the arcsine and arctangent functions.
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Activity 2.6.4. Determine the derivative of each of the following functions.

a. f(x) = x®arctan(x) + ¢¥ In(x)

b. p(t) = 2taresin()

c. h(z) = (arcsin(5z) + arctan(4 — z))?
d. s(y) = cot(arctan(y))

e. m(v) = In(sin?(v) + 1)

In(w) )

f. g(w) = arctan (1 2

2.6.4 The link between the derivative of a function and the derivative of
its inverse

In Figure 2.6.3, we saw an interesting relationship between the slopes of tangent lines to
the natural exponential and natural logarithm functions at points reflected across the line
y = x. In particular, we observed that at the point (In(2), 2) on the graph of f(x) = e¥, the
slope of the tangent line is f’(In(2)) = 2, while at the corresponding point (2, In(2)) on the
graph of f71(x) = In(x), the slope of the tangent line is (f1)'(2) = %, which is the reciprocal
of f'(In(2)).

That the two corresponding tangent lines have reciprocal slopes is not a coincidence. If f and
g are differentiable inverse functions, then y = f(x) if and only if x = g(y), thenf(g(x)) = x
for every x in the domain of f~!. Differentiating both sides of this equation, we have

LN = g,

and by the chain rule,
f(g(x))g'(x) = 1.

Solving for g’(x), we have g’(x) = m. Here we see that the slope of the tangent line to the
inverse function g at the point (x, g(x)) is precisely the reciprocal of the slope of the tangent
line to the original function f at the point (g(x), f(g(x))) = (g(x), x). To see this more clearly,
consider the graph of the function y = f(x) shown in Figure 2.6.6, along with its inverse
y = g(x). Given a point (4, b) that lies on the graph of f, we know that (b, a) lies on the
graph of g; because f(a) = b and g(b) = a. Now, applying the rule that ¢’(x) = 1/ f’(g(x)) to
the value x = b, we have
1 1

fa®) ~ Flay
which is precisely what we see in the figure: the slope of the tangent line to g at (b, a) is the

reciprocal of the slope of the tangent line to f at (a, b), since these two lines are reflections
of one another across the line y = x.

g'(b) =
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Figure 2.6.6: A graph of function y = f(x) along with its inverse, y = g(x) = f71(x).
Observe that the slopes of the two tangent lines are reciprocals of one another.

Derivative of an inverse function.
Suppose that f is a differentiable function with inverse g and that (4, b) is a point
that lies on the graph of f at which f’(a) # 0. Then

1

7O Fay

More generally, for any x in the domain of g/, we have ¢’(x) = 1/ f'(g(x)).

The rules we derived for In(x), arcsin(x), and arctan(x) are all just specific examples of this
general property of the derivative of an inverse function. For example, with g(x) = In(x)
and f(x) = e*, it follows that

1 1 1

70 = FG) " ¥

2.6.5 Summary

e For all positive real numbers x, %[ln(x)] = %

1
Vi-x2'

e For all real numbers x such that -1 < x < 1, %[arcsin(x)] = In addition, for all

4 1
7 dx 1+x2°

real numbers x, < [arctan(x)] =

¢ If g is the inverse of a differentiable function f, then for any point x in the domain of
A — 1
g 4 g (x) - f’(g(x))‘
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2.6.6 Exercises

1. Composite function involving logarithms and polynomials. Find the derivative of B8
the funCthn f(t) = h’l(t3 + 3) WeBWork

2.  Composite function involving trigonometric functions and logarithms. Find the de-
rivative of the function g(t) = cos(In(t)). weaork
3. Product involving arcsin(w). Find the derivative of the function h(w) = 5w arcsin w

WeBWork

4. Derivative involving arctan(x). For x > 0, find and simplify the derivative of f(x) =
arctan x + arctan(1/x). (What does your result tell you about f)? e

5. Composite function from a graph. Let (xo, yo) = (2,6) and (x1, y1) = (2.1,6.2). Use the B
following graph of the function f to find the indicated derivatives. Weaterk

If h(x) = (f(x))?, find h’(2).
Gt 1), If g(x) = f~1(x), find g’(6).
{n8,y8),
6. Composite function involving an inverse trigonometric function. Let <&

f(x)=7sin7!(x?).
Find f’(x).
7. Mixing rules: product, chain, and inverse trig. If f(x) = 8x* arctan(3x3), find f’(x).
8. Mixing rules: product and inverse trig. Let f(x) = 8 cos(x)sin"!(x). Find f’(x).

WeBWorK

9.  Determine the derivative of each of the following functions. Use proper notation and
clearly identify the derivative rules you use.

a. f(x) =In(2arctan(x) + 3 arcsin(x) + 5)
b. 7(z) = arctan(In(arcsin(z)))

c. q(t) = arctan?(3t) arcsin*(7t)

_ arctan(v)
d. g(v) =In (W)
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10. Consider the graph of y = f(x) provided in Figure 2.6.7 and use it to answer the fol-
lowing questions.

a. Use the provided graph to estimate the value

of £/(1).

b. Sketch an approximate graph of y = f~!(x).

Label at least three distinct points on the /
graph that correspond to three points on the

graph of f.

c. Based on your work in (a), what is the value
of (f71Y'(~=1)? Why?

Figure 2.6.7: A function
y=f)
11. Let f(x) = 1x3 +4.
a. Sketch a graph of y = f(x) and explain why f is an invertible function.

b. Let g be the inverse of f and determine a formula for g.

c. Compute f’(x), g’(x), f’(2), and g’(6). What is the special relationship between
f'(2) and ¢’(6)? Why?

12. Let h(x) = x + sin(x).
a. Sketch a graph of y = h(x) and explain why & must be invertible.

b. Explain why it does not appear to be algebraically possible to determine a formula
for h~1.

c. Observe that the point (7, 5 + 1) lies on the graph of y = h(x). Determine the
value of (b1 (% +1).
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2.7 Derivatives of Functions Given Implicitly

Motivating Questions

* What does it mean to say that a curve is an implicit function of x, rather than an
explicit function of x?

* How does implicit differentiation enable us to find a formula for fl—z when y is an
implicit function of x?

¢ In the context of an implicit curve, how can we use Z—Z to answer important questions
about the tangent line to the curve?

In all of our studies with derivatives so far, we have worked with functions whose formula
is given explicitly in terms of x. But there are many interesting curves whose equations
involving x and y are impossible to solve for y in terms of x.

P+yr=16

Figure 2.7.1: At left, the circle given by x? + y? = 16. In the middle, the portion of the circle
x% + y? = 16 that has been highlighted in the box at left. And at right, the lemniscate given
by x3 — y3 = 6xy.

Perhaps the simplest and most natural of all such curves are circles. Because of the circle’s
symmetry, for each x value strictly between the endpoints of the horizontal diameter, there
are two corresponding y-values. For instance, in Figure 2.7.1, we have labeled A = (-3, \7 )
and B = (-3,-V7), and these points demonstrate that the circle fails the vertical line test.
Hence, it is impossible to represent the circle through a single function of the form y =
f(x). But portions of the circle can be represented explicitly as a function of x, such as the
highlighted arc that is magnified in the center of Figure 2.7.1. Moreover, it is evident that
the circle is locally linear, so we ought to be able to find a tangent line to the curve at every

point. Thus, it makes sense to wonder if we can compute Z—Z at any point on the circle, even
though we cannot write y explicitly as a function of x.

We say that the equation x? + y? = 16 defines y implicitly as a function of x. The graph
of the equation can be broken into pieces where each piece can be defined by an explicit
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function of x. For the circle, we could choose to take the top half as one function of x, namely

¥ = V16 — x? and the bottom half as y = —V16 — x2. The equation for the circle defines two
implicit functions of x.

The righthand curve in Figure 2.7.1 is called a lemniscate and is just one of many fascinating
possibilities for implicitly given curves.

How can we find an equation for Z—Z without an explicit formula for y in terms of x? The
following preview activity reminds us of some ways we can compute derivatives of functions
in settings where the function’s formula is not known.

Preview Activity 2.7.1. Let f be a differentiable function of x (whose formula is not
known) and recall that %[ f(x)] and f’(x) are interchangeable notations. Determine
each of the following derivatives of combinations of explicit functions of x, the un-
known function f, and an arbitrary constant c.

a. &[22+ f(x)] d. L [f(x?)]
b. & [¥2f(x)]
¢ gk [e+x+f()?] e & [xf(x)+ flcx) + cf(x)]

2.7.1 Implicit Differentiation

We begin our exploration of implicit differentiation with the example of the circle given by
x% + y% = 16. How can we find a formula for Z—Z?

By viewing y as an implicit function of x, we think of y as some function whose formula f(x)
is unknown, but which we can differentiate. Just as y represents an unknown formula, so

too its derivative with respect to x, Z—z, will be (at least temporarily) unknown.

So we view y as an unknown differentiable function of x and differentiate both sides of the
equation with respect to x.

d d
% [x2 + y2] = % [16]

On the right, the derivative of the constant 16 is 0, and on the left we can apply the sum rule,
so it follows that

Note carefully the different roles being played by x and y. Because x is the independent
variable, & [x2| = 2x. But y is the dependent variable and v is an implicit function of x.

Recall Preview Activity 2.7.1, where we computed <[ f(x)?]. Computing =[] is the same,
and requires the chain rule, by which we find that % [y?] = 2y! %. We now have that

0.

d
2x + 2y Zz

dx
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We solve this equation for Z—Z by subtracting 2x from both sides and dividing by 2y.

dy | 2

dx 2y

There are several important things to observe
about the result that Z—Z = —Z_ First, this ex-

pression for the derivative involves both x and
y. This makes sense because there are two
corresponding points on the circle for each
value of x between —4 and 4, and the slope
of the tangent line is different at each of these
points.Second, this formula is entirely consis-
tent with our understanding of circles. The
slope of the radius from the origin to the point
(a,b)ism, = % The tangent line to the circle at
(a,b) is perpendicular to the radius, and thus
has slope m; = —{, as shown in Figure 2.7.2.
In particular, the slope of the tangent line is
zero at (0,4) and (0, —4), and is undefined at
(—4,0) and (4, 0). All of these values are con-

X

sistent with the formula Z—Z =-y

X

v

Figure 2.7.2: The circle given by

x% + y? = 16 with point (a, b) on the circle
and the tangent line at that point, with
labeled slopes of the radial line, m,, and
tangent line, m;.

Example 2.7.3 For the curve given implicitly by x> + y?> —2xy = 2, shown in Figure 2.7.4, find

the slope of the tangent line at (-1, 1).

Figure 2.7.4: The curve x> + y? — 2xy = 2.
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Solution. We begin by differentiating the curve’s equation implicitly. Taking the derivative
of each side with respect to x,

drs, 2 _ 4
[P +y?-2wy] = 2],

by the sum rule and the fact that the derivative of a constant is zero, we have
d s d_ o, d B
dx[x 1+ dx[y I dx[ny] =0.

For the three derivatives we now must execute, the first uses the simple power rule, the
second requires the chain rule (since y is an implicit function of x), and the third necessitates
the product rule (again since y is a function of x). Applying these rules, we now find that
dy

- [ZxE +2y] =0.

d
3x2 +2y£

We want to solve this equation for Z—z. To do so, we first collect all of the terms involving Z—Z
on one side of the equation.

d d
2y—y —2x—y

_ .2
e dx—Zy 3x-.

Then we factor the left side to isolate %.
d
%(Zy - 2x) =2y - 3x%.

Finally, we divide both sides by (2y — 2x) and conclude that

dy 2y —3x?

dx — 2y-2x’

Note that the expression for % depends on both x and y. To find the slope of the tangent
line at (—1, 1), we substitute the coordinates into the formula for Z—Z, using the notation

dy 21 -3(-1 1

x|y, 2)-2(-1) 4

This value matches our visual estimate of the slope of the tangent line shown in Figure 2.7 4.

Example 2.7.3 shows that it is possible when differentiating implicitly to have multiple terms
involving Z—Z. We use addition and subtraction to collect all terms involving Z—Z on one side
of the equation, then factor to get a single term of Z—Z. Finally, we divide to solve for Z—Z.
We use the notation

dy

x|, p)
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to denote the evaluation of Z—Z at the point (a, b). This is analogous to writing f’(a) when f’
depends on a single variable.

There is a big difference between writing f—x and Z—Z. For example,
d
E[XZ +3°]

gives an instruction to take the derivative with respect to x of the quantity x? + y?, presum-
ably where vy is a function of x. On the other hand,

d
2ty

means the product of the derivative of y with respect to x with the quantity x> + 2. Under-
standing this notational subtlety is essential.

Activity 2.7.2. Consider the curve defined by the equation x = y° — 5y + 4y, whose
graph is pictured in Figure 2.7.5.

a. Explain why it is not possible to 3¢
express y as an explicit function of
X.

b. Use implicit differentiation to find
a formula for dy /dx. | ~ X

c. Use your result from part (b) to

find an equation of the line tangent B

to the graph of x = y° — 5y° + 4y
at the point (0, 1).

d. Use your result from part (b) to de-
termine all of the points at which
the graph of x = y° — 5y + 4y has
a vertical tangent line.

Figure 2.7.5: The curve
x =y5 - 5y% +4y.

It is natural to ask where the tangent line to a curve is vertical or horizontal. The slope of a
horizontal tangent line must be zero, while the slope of a vertical tangent line is undefined.

Often the formula for Z—z is expressed as a quotient of functions of x and y, say

dy _pxy)
dx  q(x,y)

The tangent line is horizontal precisely when the numerator is zero and the denominator is
nonzero, making the slope of the tangent line zero. If we can solve the equation p(x, y) =0
for either x and y in terms of the other, we can substitute that expression into the original
equation for the curve. This gives an equation in a single variable, and if we can solve that
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equation we can find the point(s) on the curve where p(x, y) = 0. At those points, the tangent
line is horizontal.

Similarly, the tangent line is vertical whenever q(x, y) = 0 and p(x, y) # 0, making the slope
undefined.

Activity 2.7.3. Consider the curve defined by the equation y(y? — 1)(y — 2) = x(x —
1)(x — 2), whose graph is pictured in Figure 2.7.6. Through implicit differentiation, it
can be shown that

dy  (x-1(x-2)+x(x-2)+x(x—1)

dx (P2 -y -2)+2y2(y-2) + y(y2 - 1)

Use this fact to answer each of the following questions.

y
a. Determine all points (x,y) at
which the tangent line to the

curve is horizontal. (Use tech-

nology appropriately to find the

needed zeros of the relevant 1
polynomial function.)

b. Determine all points (x,y) at A
which the tangent line is vertical. 1
(Use technology appropriately

to find the needed zeros of the -
relevant polynomial function.)
c. Find the equation of the tangent

line to the curve at one of the Figure 2.7.6:
points where x = 1. y(y2 - 1)(y —2) = x(x — 1)(x - 2).

Activity 2.7.4. For each of the following curves, use implicit differentiation to find
dy/dx and determine the equation of the tangent line at the given point.
a. x3 - y* = 6xy, (-3,3) c. 3xe~ = y2, (0.619061,1)

b. sin(y) +y = x> +x, (0,0)

2.7.2 Summary

¢ Inanequation involving x and y where portions of the graph can be defined by explicit
functions of x, we say that y is an implicit function of x. A good example of such a
curve is the unit circle.

¢ We use implicit differentiation to differentiate an implicitly defined function. We dif-
ferentiate both sides of the equation with respect to x, treating v as a function of x by
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2.7 Derivatives of Functions Given Implicitly

applying the chain rule. If possible, we subsequently solve for % using algebra.

¢ While Z—Z may now involve both the variables x and y, Z—z still gives the slope of the
tangent line to the curve. It may be used to decide where the tangent line is horizontal
dy _

= = 0) or vertical (Z—Z is undefined), or to find the equation of the tangent line at a

particular point on the curve.

2.7.3 Exercises

1. Imp11c1t differentiaion in a polynomial equation. Find dy/dx in terms of x and y if &
x>y —x-5y—11=0.

d
2. Implicit differentiation in an equation with logarithms. Find % in terms of x and y B

ifxIny +y°=3Inx.

3. Implicit differentiation in an equation w1th inverse trigonometric functions. Find
dy/dx in terms of x and y if arctan(x3y) = xy3.

WeBWorK

)Av

We Bwn K

)Av

WeBWurK

4.  Slope of the tangent line to an implicit curve. Find the slope of the tangent to the B8

curve x3 + xy + y> =31 at (1,5).

WeBWork

5.  Equation of the tangent line to an implicit curve. Use implicit differentiation to find g

an equation of the tangent line to the curve 3xy> + xy = 16 at the point (4, 1).

6.  Consider the curve given by the equation 2y + y? — > = x*—2x3+ x2. Find all points at
which the tangent line to the curve is horizontal or vertical. Be sure to use a graphing
utility to plot this implicit curve and to visually check the results of algebraic reasoning
that you use to determine where the tangent lines are horizontal and vertical.

7. For the curve given by the equation sin(x + y) + cos(x — y) = 1, find the equation of the
tangent line to the curve at the point (%, ).

8. Implicit differentiation enables us a different perspectlve from which to see why the
rule 4 Z;[a*] = a*In(a) holds, if we assume that Z7[In(x)] = 1. This exercise leads you
through the key steps to do so.

a. Let y = a*. Rewrite this equation using the natural logarithm function to write x
in terms of y (and the constant a).

b. Differentiate both sides of the equation you found in (a) with respect to x, keeping
in mind that y is implicitly a function of x.

c. Solve the equation you found in (b) for , and then use the definition of y to

write E solely in terms of x. What have you found?
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Chapter 2 Computing Derivatives

2.8 Using Derivatives to Evaluate Limits

Motivating Questions

* How can derivatives be used to help us evaluate indeterminate limits of the form 3?
* What does it mean to say that lim,_,. f(x) = L and limy_,, f(x) = 00?

¢ How can derivatives assist us in evaluating indeterminate limits of the form 2?

Because differential calculus is based on the definition of the derivative, and the definition
of the derivative involves a limit, there is a sense in which all of calculus rests on limits. In
addition, the limit involved in the definition of the derivative always generates the indeter-
minate form g. If f is a differentiable function, then in the definition

)=/

£ = lim

not only does i — 0 in the denominator, but also (f(x + /) — f(x)) — 0 in the numerator,
since f is continuous. Remember, saying that a limit has an indeterminate form only means
that we don't yet know its value and have more work to do: indeed, limits of the form 8 can

take on any value, as is evidenced by evaluating f’(x) for varying values of x for a function
such as f'(x) = x2.

We have learned many techniques for evaluating the limits that result from the derivative
definition, including a large number of shortcut rules. In this section, we turn the situa-
tion upside-down: instead of using limits to evaluate derivatives, we explore how to use
derivatives to evaluate certain limits.

Preview Activity 2.8.1. Let & be the function given by h(x) = x?{—fq

=
a. What is the domain of i?

5

x> +x—2
b. Explain why lim ————— results in an indeterminate form.
-1 x%-1

c. Next we will investigate the behavior of both the numerator and denominator
of h near the point where x = 1. Let f(x) = x° + x —2 and g(x) = x? — 1. Find
the local linearizations of f and g at 2 = 1, and call these functions L ¢(x) and
Ly(x), respectively.

d. Explain why h(x) ~ Z—g; for x neara = 1.
e. Using your work from (c) and (d), evaluate

Lg(x)
o1 Ly(x)°

What do you think your result tells us about lim, 1 k(x)?
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2.8 Using Derivatives to Evaluate Limits

f. Investigate the function h(x) graphically and numerically near x = 1. What do
you think is the value of lim,_,; h(x)?

0

2.8.1 Using derivatives to evaluate indeterminate limits of the form .

Figure 2.8.1: At left, the graphs of f and g near the value a, along with their tangent line
approximations Ly and L, at x = a. At right, zooming in on the point 2 and the four
graphs.

The idea demonstrated in Preview Activity 2.8.1 — that we can evaluate an indeterminate
limit of the form 8 by replacing each of the numerator and denominator with their local lin-

earizations at the point of interest — can be generalized in a way that enables us to evaluate
a wide range of limits. We have a function /(x) that can be written as a quotient /i(x) = %,
where f and g are both differentiable at x = a and for which f(a) = g(a) = 0. We would
like to evaluate the indeterminate limit given by lim,_,, h(x). Figure 2.8.1 illustrates the sit-
uation. We see that both f and g have an x-intercept at x = a. Their respective tangent line
approximations Ly and L, at x = a are also shown in the figure. We can take advantage
of the fact that a function and its tangent line approximation become indistinguishable as

X — a.

First, let’s recall that L¢(x) = f’(a)(x —a) + f(a) and L;(x) = g’(a)(x —a) + g(a). Because x is
getting arbitrarily close to @ when we take the limit, we can replace f with L; and replace g
with L,, and thus we observe that

lim M = lim —Lf(x)
x—a g(x) x—a Lg(x)
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o L@ —a) + fla)
o g'(a)(x —a) +g(a)

Next, we remember that both f(a) = 0 and g(a) = 0, which is precisely what makes the
original limit indeterminate. Substituting these values for f(a) and g(a) in the limit above,
we now have

f@) _ L f@x=a)

lim 7(x) ~ o8 g/(a)(x —a)
i F@
x—a g "(a)’
where the latter equality holds because 3= = 1 when x is approaching (but not equal to) a.

Finally, we note that % is constant W1th respect to x, and thus

o [ _ @
g @)

This result holds as long as g’(a) is not equal to zero. The formal name of the result is
L'Hopital’s Rule.

L'Hopital’s Rule.

Let f and g be differentiable at x = a4, and suppose that f(2) = g(a) = 0 and that

g'(a) # 0. Then lim,_,, ﬁ_i - 58

In practice, we typically work with a slightly more general version of L'Hopital’s Rule, which
states that (under the identical assumptions as the boxed rule above and the extra assump-
tion that g’ is continuous at x = a)

I
x—a g(x) x—»ag(x)

provided the righthand limit exists. This form reflects the basic idea of L'Hopital’s Rule: if

J; Ex produces an indeterminate limit of form J as x — a, that limit is equivalent to the limit

of the quotient of the two functions’ derivatives, %.

For example, if we consider the limit from Preview Activity 2.8.1,
x>+ x -2

lim ———
x—1 x2 -1 !

by L'Hoépital’s Rule we have that

CoxXP+x-2 . 5xt41
lim ——— =lim
x—1 xz -1 x—1 2x

6
—5—3.

By replacing the numerator and denominator with their respective derivatives, we often
replace an indeterminate limit with one whose value we can easily determine.
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2.8 Using Derivatives to Evaluate Limits

Activity 2.8.2. Evaluate each of the following limits. If you use L'H6pital’s Rule, in-
dicate where it was used, and be certain its hypotheses are met before you apply it.

. In(1+x . 2In(x
a. limy_g % c. limy_y 1—e£-3

. cos(x) . sin(x)—x
b. 11mx—>7'[ —— d. 111'1’1x—>0 cos(2x)-1

While I’'Hépital’s Rule can be applied in an entirely algebraic way, it is important to re-
member that the justification of the rule is graphical: the main idea is that the slopes of the
tangent lines to f and g at x = a determine the value of the limit of % asx — a.

m= f'(a)

Figure 2.8.2: Two functions f and g that satisfy L'Hopital’s Rule.

We see this in Figure 2.8.2, where we can see from the grid that f’(a) = 2 and g'(2) = -1,
hence by L'Hopital’s Rule,

im 10 LW _ 2,

xauﬁ h g’(a) -1

It’s not the fact that f and g both approach zero that matters most, but rather the rate at

which each approaches zero that determines the value of the limit. This is a good way to
)

—ai
e as x ais

remember what L'Hopital’s Rule says: if f(a) = g(a) = 0, the the limit of
given by the ratio of the slopes of f and g at x = a.

Activity 2.8.3. In this activity, we reason graphically from the following figure to
evaluate limits of ratios of functions about which some information is known.
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Chapter 2 Computing Derivatives

Figure 2.8.3: Three graphs referenced in the questions of Activity 2.8.3.

a. Use the left-hand graph to determine the values of f(2), f'(2), (2), and g’(2).

Then, evaluate lim &)
x—2 9 ( )’

b. Use the middle graph to find p(2), p’(2), q(2), and g’(2). Then, determine the

px)
value of hin ek

¢. Assume that r and s are functions whose for which r”(2) # 0 and s”(2) # 0
Use the right-hand graph to compute r(2), r'(2), s(2), s’(2). Explain why you
cannot determine the exact value of hm E ; without further information being

provided, but that you can determine the sign of lin} ?x; In addition, state what
X—

the sign of the limit will be, with justification.

2.8.2 Limits involving co

The concept of infinity, denoted oo, arises naturally in calculus, as it does in much of math-
ematics. It is important to note from the outset that oo is a concept, but not a number itself.
Indeed, the notlon of oo naturally invokes the idea of limits. Consider, for example, the
function f(x) = 1, whose graph is pictured in Figure 2.8.4.

We note that x = 0 is not in the domain of f, so we may naturally wonder what happens
as x — 0. As x — 0%, we observe that f(x) increases without bound. That is, we can make
the value of f(x) as large as we like by taking x closer and closer (but not equal) to 0, while
keeping x > 0. This is a good way to think about what infinity represents: a quantity is
tending to infinity if there is no single number that the quantity is always less than. Recall
that the statement lim,_,, f(x) = L, means that can make f(x) as close to L as we’d like by
taking x sufficiently close (but not equal) to 2. We now expand this notation and language to

include the possibility that either L or 4 can be co. For instance, for f(x) = -, we now write
1
lim — = oo,
x—0" X

by which we mean that we can make 1 as large as we like by taking x sufficiently close (but
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2.8 Using Derivatives to Evaluate Limits

Figure 2.8.4: The graph of f(x) = 1.

not equal) to 0. In a similar way, we write

lim — =0,

x—oo X
since we can make 1 as close to 0 as we'd like by taking x sufficiently large (i.e., by letting x
increase without bound).

In general, the notation lim,_,, f(x) = co means that we can make f(x) as large as we like by
taking x sufficiently close (but not equal) to 4, and the notation lim, . f(x) = L means that
we can make f(x) as close to L as we like by taking x sufficiently large. This notation also
applies to left- and right-hand limits, and to limits involving —co. For example, returning to
Figure 2.8.4 and f(x) = 1, we can say that

1

1
Iim — =-00 and Iim — =0.
x—0" X x——00 X

Finally, we write
lim f(x) =00

xX—00

if we can make the value of f(x) as large as we’d like by taking x sufficiently large. For
example,
lim x* = co.

X—00

Limits involving infinity identify vertical and horizontal asymptotes of a function. If lim f(x) =
X—a

oo, then x = a is a vertical asymptote of f, whileiflim,_,. f(x) = L, then y = Lisahorizontal
asymptote of f. Similar statements can be made using —co, and with left- and right-hand
limitsasx - a~ orx — at.

In precalculus classes, it is common to study the end behavior of certain families of functions,
by which we mean the behavior of a function as x — oo and as x — —oco. Here we briefly
examine some familiar functions and note the values of several limits involving co.
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64
y=f(x)
2 2
8
641
y=g(x)

Figure 2.8.5: Graphs of some familiar functions whose end behavior as x — +co is known.
In the middle graph, f(x) = x> — 16x and g(x) = x* — 16x? — 8.

For the natural exponential function e*, we note that lim,_, ¥ = oo and limy_,_ e* =
0. For the exponential decay function e™, these limits are reversed, with limy_,,e™ = 0
and lim,_,_o e™* = oco. Turning to the natural logarithm function, we have lim,_,o+ In(x) =
—o0 and limy_,e In(x) = co. While both e¢* and In(x) grow without bound as x — oo, the
exponential function does so much more quickly than the logarithm function does. We’ll
soon use limits to quantify what we mean by “quickly.”

For polynomial functions of the form

1

p(x) =apyx" +a,1x" + - a1x + ag,

the end behavior depends on the sign of a,, and whether the highest power 7 is even or odd.
If n is even and a,, is positive, then lim, . p(x) = oo and limy_,_ p(x) = o0, as in the plot of
g in Figure 2.8.5. If instead 4, is negative, then lim, . p(x) = —co and limy_,_ p(x) = —co.
In the situation where 7 is odd, then either lim,_,o p(x) = o0 and limy—,_« p(x) = —oco (which
occurs when a,, is positive, as in the graph of f in Figure 2.8.5), or lim,_,. p(x) = —co and
limy_,_« p(x) = 0o (When a, is negative).

A function can fail to have a limit as x — oco. For example, consider the plot of the sine
function at right in Figure 2.8.5. Because the function continues oscillating between —1 and
1 as x — oo, we say that lim,_, sin(x) does not exist.

Finally, it is straightforward to analyze the behavior of any rational function as x — oo.

Example 2.8.6 Determine the limit of the function

3x2—4x +5

q(x) = 7x2 +9x - 10

as X — 09,

Note that both (3x? — 4x +5) — o0 as x — oo and (7x? + 9x — 10) — oo as x — oco. Here
we say that lim,_,. g(x) has indeterminate form Z. We can determine the value of this limit
through a standard algebraic approach. Multiplying the numerator and denominator each
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by %, we find that

, . 3x%—4x+5 =
Jim g(x) = a}ﬁ‘o7x2+9x—1o'g
3—4%+5% 3

s 7491 10L 77

since % — 0and % — 0 as x — oco. This shows that the rational function 4 has a horizontal

asymptote at y = 2. A similar approach can be used to determine the limit of any rational
function as x — oo.

But how should we handle a limit such as

Here, both x2 — oo and e* — oo, but there is not an obvious algebraic approach that enables
us to find the limit’s value. Fortunately, it turns out that L'Hopital’s Rule extends to cases
involving infinity.

L'Hopital’s Rule ().

a )
If f and g are differentiable and both approach zero or both approach o as x — a
(where a is allowed to be o) , then

lim f0) = lim f (x),
x—a g(x) x—a g’(x)
provided the righthand limit exists.
. J

(To be technically correct, we need to add the additional hypothesis that g’(x) # 0 on an
open interval that contains a or in every neighborhood of infinity if a is oo; this is almost
always met in practice.)

To evaluate limy_,« ;‘—:, we can apply L'Hopital’s Rule, since both x> — o0 and e* — oo.
Doing so, it follows that
o ox2? o 2x

lim — = lim —.

xX—00 @ x—oo X
This updated limit is still indeterminate and of the form Z, but it is simpler since 2x has
replaced x?. Hence, we can apply L'Hopital’s Rule again, and find that

x? 2x 2

lim — = lim — = lim —.
x—00 @ x—o0 @ x—oo ¥

Now, since 2 is constant and e¥ — oo as x — oo, it follows that e% — 0 as x — oo, which
shows that

153



Chapter 2 Computing Derivatives

Activity 2.8.4. Evaluate each of the following limits. If you use L'H6pital’s Rule, in-
dicate where it was used, and be certain its hypotheses are met before you apply it.

tan(x
a. limy_ e ln(x) d. thH x—(%)
B e*+x
b. hmx_m W
li In(x) . .
c. limy o+ = e. lim,_,. xe
X

To evaluate the limit of a quotient of two functions ! E ; that results in an indeterminate form

of 2, in essence we are asking which function is growing faster without bound. We say that
the function g dominates the function f as x — oo provided that

G
i g9(x)

whereas f dominates g provided that limy_, % = co. Finally, if the value of lim,_,

=0,

[
g(x)
is finite and nonzero, we say that f and g grow at the same rate. For example, we saw that

limy— oo if—f =0, so e* dominates x2, while lim,_,c % = %, so f(x) = 3x2 — 4x + 5 and
g(x) = 7x% + 9x — 10 grow at the same rate.

2.8.3 Summary

* Derivatives can be used to help us evaluate indeterminate limits of the form J through
L'Hopital’s Rule, by replacing the functions in the numerator and denominator with
their tangent line approximations. In particular, if f(a) = g(a) = 0 and f and g are
differentiable at 2, L'Hopital’s Rule tells us that

f(X) f'(x)
TS e

* When we writex — oo, this means that x is increasing withoutbound. Thus, lim f(x) =
X—00

L means that we can make f(x) as close to L as we like by choosing x to be sufficiently
large. Similarly, limy_,, f(x) = oo, means that we can make f(x) as large as we like by
choosing x sufficiently close to a.

* A version of LUHopital’s Rule also helps us evaluate indeterminate limits of the form
= If f and g are differentiable and both approach zero or both approach +coas x — a
(where a is allowed to be o), then

L)
x—a g(x) x>a g'(x)
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2.8.4 Exercises

x
1. L'Hopital’s Rule with graphs. For the figures below, determine if lim jgrgx) is positive, BN
X—a WeBWorK
negative, zero, or undefined when f(x) is shown as the blue curve and g(x) as the black
curve.
a a
In(x/4
2. L'Hopital’s Rule to evaluate a limit. Find the limit: lim w <A
x—4 x> —16 WeBK
3. Determining if L'Hoépital’s Rule applies. Compute the following limits using <&
I"'Hopital’s rule if appropriate. Hesterk
. 1—cos(7x) o4 =-3"-1
lim —————= lim ———
x—0 1 — cos(3x) -1 x2-1
4. Using L'Hopital’s Rule multiple times. Evaluate the limit using L'Hopital’s rule. <&

WeBWork
- 15x3
lim

x—o0 2%

5.  Let f and g be differentiable functions about which the following information is known:
fB)=9(3)=0,f3) =9'(3) =0, f"(3) = =2, and g”(3) = 1. Let a new function / be

given by the rule h(x) = %.

g near x = 3, and use the provided information to determine the value of

On the same set of axes, sketch possible graphs of f and

lim h(x).
x—3
Provide explanation to support your conclusion.
6.  Find all vertical and horizontal asymptotes of the function

3(x —a)(x —b)

R(x) = 5(x —a)(x —c)’

where a, b, and ¢ are distinct, arbitrary constants. In addition, state all values of x for
which R is not continuous. Sketch a possible graph of R, clearly labeling the values of
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a,b,and c.
Consider the function g(x) = x*, which is defined for all x > 0. Observe that 111’51 g(x)
x—0%

is indeterminate due to its form of 0°. (Think about how we know that 0¥ = 0 for all
k > 0, while b° = 1 for all b # 0, but that neither rule can apply to 0°.)

a. Let h(x) = In(g(x)). Explain why h(x) = 2x In(x).

b. Next, explain why it is equivalent to write h(x) = 211(94).

X

c. Use L'Hopital’s Rule and your work in (b) to compute lim,_,o+ /1(x).

d. Based on the value of limy_,o+ i(x), determine lim,_,o+ g(x).

Recall we say that function g dominates function f provided that limy_,« f(x) = oo,
f@)

——=0.

g9(x)

a. Which function dominates the other: In(x) or v/x?

limy e g(x) = 00, and limy_,c0

b. Which function dominates the other: In(x) or {/x? (n can be any positive integer)
c. Explain why e* will dominate any polynomial function.
d. Explain why x" will dominate In(x) for any positive integer .

e. Give any example of two nonlinear functions such that neither dominates the
other.



CHAPTER 3 .

Using Derivatives

3.1 Using derivatives to identify extreme values

Motivating Questions

* What are the critical numbers of a function f and how are they connected to identi-
fying the most extreme values the function achieves?

* How does the first derivative of a function reveal important information about the
behavior of the function, including the function’s extreme values?

* How can the second derivative of a function be used to help identify extreme values
of the function?

In many different settings, we are interested in knowing where a function achieves its least
and greatest values. These can be important in applications — say to identify a point at
which maximum profit or minimum cost occurs — or in theory to characterize the behavior
of a function or a family of related functions.

Consider the simple and familiar example of a parabolic function such as s(t) = —16t2+32t +
48 (shown at left in Figure 3.1.2) that represents the height of an object tossed vertically: its
maximum value occurs at the vertex of the parabola and represents the greatest height the
object reaches. This maximum value is an especially important point on the graph, the point
at which the curve changes from increasing to decreasing.

Definition 3.1.1 Given a function f, we say that f(c) is a global or absolute maximum of f
provided that f(c) > f(x) for all x in the domain of f, and similarly we call f(c) a global or
absolute minimum of f whenever f(c) < f(x) for all x in the domain of f.

For instance, in Figure 3.1.2, g has a global maximum of g(c), but g does not appear to have
a global minimum, as the graph of g seems to decrease without bound. Note that the point
(¢, g(c)) marks a fundamental change in the behavior of g, where g changes from increasing
to decreasing; similar things happen at both (4, g(a)) and (b, g(b)), although these points are
not global minima or maxima.

Definition 3.1.3 We say that f(c) is a local maximum or relative maximum of f provided
that f(c) > f(x)forall x near ¢, and f(c) is called a local or relative minimum of f whenever
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Figure 3.1.2: At left, s(t) = —16t> + 24t + 32 whose vertex is (%, 41); at right, a function g
that demonstrates several high and low points.

f(c) £ f(x) for all x near c.

For example, in Figure 3.1.2, g has a relative minimum of g(b) at the point (b, g(b)) and a
relative maximum of g(a) at (2, g(a)). We have already identified the global maximum of g
as g(c); it can also be considered a relative maximum. Any maximum or minimum may also
be called an extreme value of f.

We would like to use calculus ideas to identify and classify key function behavior, including
the location of relative extremes. Of course, if we are given a graph of a function, it is often
straightforward to locate these important behaviors visually.

Preview Activity 3.1.1. Consider the function % given by the graph in Figure 3.1.4.
Use the graph to answer each of the following questions.

a. Identify all of the values of ¢ such that -3 < ¢ < 3 for which /(c) is a local
maximum of /.

b. Identify all of the values of ¢ such that -3 < ¢ < 3 for which /(c) is a local
minimum of /.

c. Does h have a global maximum on the interval [-3, 3]? If so, what is the value
of this global maximum?

d. Does h have a global minimum on the interval [-3, 3]? If so, what is its value?
e. Identify all values of ¢ for which h’(c) = 0.
f. Identify all values of ¢ for which h’(c) does not exist.

g. True or false: every relative maximum and minimum of /& occurs at a point
where h’(c) is either zero or does not exist.
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3.1 Using derivatives to identify extreme values

h. True or false: at every point where ’(c) is zero or does not exist, i has a relative
maximum or minimum.

Figure 3.1.4: The graph of a function / on the interval [-3, 3].

3.1.1 Critical numbers and the first derivative test

If a continuous function has a relative maximum at ¢, then it is both necessary and sufficient
that the function change from being increasing just before ¢ to decreasing just after c. A
continuous function has a relative minimum at c if and only if the function changes from
decreasing to increasing at c. (See Figure 3.1.6.) There are only two possible ways for these
changes in behavior to occur: either f’(c) = 0 or f’(c) is undefined. Because these values of
¢ are so important, we call them critical numbers.

Definition 3.1.5 We say that a function f has a critical number at x = c provided that c is in
the domain of f, and f’(c) = 0 or f’(c) is undefined.

Critical numbers are the only possible locations where the function f may have relative
extremes. Note that not every critical number produces a maximum or minimum; in the
middle graph of Figure 3.1.6, the function pictured there has a horizontal tangent line at the
noted point, but the function is increasing before and increasing after, so the critical number
does not yield a maximum or minimum.

When c is a critical number, we say that (¢, f(c)) is a critical point of the function, or that f(c)
is a critical value . The first derivative test summarizes how sign changes in the first derivative
(which can only occur at critical numbers) indicate the presence of a local maximum or
minimum for a given function.
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s MY

Figure 3.1.6: From left to right, a function with a relative maximum where its derivative is
zero; a function with a relative maximum where its derivative is undefined; a function
with neither a maximum nor a minimum at a point where its derivative is zero; a function
with a relative minimum where its derivative is zero; and a function with a relative
minimum where its derivative is undefined.

First Derivative Test.

If p is a critical number of a continuous function f that is differentiable near p (except

possibly at x = p), then f has a relative maximum at p if and only' if f” changes sign
from positive to negative at p, and f has a relative minimum at p if and only if f’
changes sign from negative to positive at p.

Example 3.1.7 Let f be a function whose derivative is given by the formula f’(x) = e 2¥(3 -
x)(x + 1)2. Determine all critical numbers of f and decide whether a relative maximum,
relative minimum, or neither occurs at each.

Solution. Since we already have f’(x) written in factored form, it is straightforward to find
the critical numbers of f. Because f’(x) is defined for all values of x, we need only determine
where f’(x) = 0. From the equation

B -x)(x+1)?=0

and the zero product property, it follows that x = 3 and x = —1 are critical numbers of f.
(There is no value of x that makes e™2* = 0.)

Next, to apply the first derivative test, we’d like to know the sign of f’(x) at inputs near the
critical numbers. Because the critical numbers are the only locations at which f’ can change
sign, it follows that the sign of the derivative is the same on each of the intervals created
by the critical numbers: for instance, the sign of f’ must be the same for every x < —1. We
create a first derivative sign chart to summarize the sign of f” on the relevant intervals, along
with the corresponding behavior of f.

To produce the first derivative sign chart in Figure 3.1.8 we identify the sign of each factor of
f'(x) at one selected point in each interval. For instance, for x < —1, we could determine the
sign of 72, (3 — x), and (x + 1)? at the value x = —2. We note that both ¢=2* and (x + 1) are
positive regardless of the value of x, while (3 — x) is also positive at x = —2. Hence, each of
the three terms in f’ is positive, which we indicate by writing “+ + +.” Taking the product
of three positive terms results in a positive value for f’, which we denote by the “+” in the

Technically, we also have to assume that f is not piecewise constant on any intervals. This is because every
point on a horizontal line is a relative maximum (and relative minimum) despite the fact that the derivative doesn’t
change sign at any point along the horizontal line.
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interval to the left of x = —1. And, since f’ is positive on that interval, we know that f is
increasing, so we write “INC” to represent the behavior of f. In a similar way, we find that
f’ is positive and f is increasing on —1 < x < 3, and f’ is negative and f is decreasing for
x> 3.

flx)=e 2B —x)(x+1)2

4+ 4+ +—+
sign(f')  + + -
1 1
1 1

Figure 3.1.8: The first derivative sign chart for a function f whose derivative is given by the
formula f’(x) = e72¥(3 — x)(x + 1)2.

Now we look for critical numbers at which f’ changes sign. In this example, f’ changes sign
only at x = 3, from positive to negative, so f has a relative maximum at x = 3. Although
f has a critical number at x = -1, since f is increasing both before and after x = —1, f has
neither a minimum nor a maximum at x = —1.

Activity 3.1.2. Suppose that g(x) is a function continuous for every value of x # 2
whose first derivative is g’(x) = (X“i)(fxz_l)z

a vertical asymptote at x = 2.

. Further, assume that it is known that g has

a. Determine all critical numbers of g.

b. By developing a carefully labeled first derivative sign chart, decide whether g
has as a local maximum, local minimum, or neither at each critical number.

c. Does g have a global maximum? global minimum? Justify your claims.

d. What is the value of lim,_,. g’(x)? What does the value of this limit tell you
about the long-term behavior of g?

e. Sketch a possible graph of y = g(x).

3.1.2 The second derivative test

Recall that the second derivative of a function tells us several important things about the
behavior of the function itself. For instance, if f” is positive on an interval, then we know
that f’ is increasing on that interval and, consequently, that f is concave up, so throughout
that interval the tangent line to y = f(x) lies below the curve at every point. Ata point where
f'(p) = 0, the sign of the second derivative determines whether f has a local minimum or
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local maximum at the critical number p.

In Figure 3.1.9, we see the four possibilities for a function f that has a critical number p at
which f’(p) = 0, provided f”(p) is not zero on an interval including p (except possibly at p).
On either side of the critical number, f” can be either positive or negative, and hence f can
be either concave up or concave down. In the first two graphs, f does not change concavity
at p, and in those situations, f has either a local minimum or local maximum. In particular,
if f’'(p) = 0and f”(p) < O, then f is concave down at p with a horizontal tangent line, so
f has a local maximum there. This fact, along with the corresponding statement for when
f"(p) is positive, is the substance of the second derivative test.

\

\ / \

Figure 3.1.9: Four possible graphs of a function f with a horizontal tangent line at a critical
point.

Second Derivative Test.

If p is a critical number of a continuous function f such that f’(p) = 0and f”(p) # 0,
then f has a relative maximum at p if and only if f”(p) < 0, and f has a relative
minimum at p if and only if f”(p) > 0.

In the event that f”(p) = 0, the second derivative test is inconclusive. Thatis, the test doesn’t
provide us any information. This is because if f”(p) = 0, it is possible that f has a local
minimum, local maximum, or neither.?

Just as a first derivative sign chart reveals all of the increasing and decreasing behavior of
a function, we can construct a second derivative sign chart that demonstrates all of the im-
portant information involving concavity.

Example 3.1.10 Let f(x) be a function whose first derivative is f’(x) = 3x* — 9x2. Construct
both first and second derivative sign charts for f, fully discuss where f is increasing and de-
creasing and concave up and concave down, identify all relative extreme values, and sketch
a possible graph of f.

Solution. Since we know f’(x) = 3x*—9x2, we can find the critical numbers of f by solving
3x* — 9x% = 0. Factoring, we observe that

0 = 3x2(x2 = 3) = 3x%(x + V3)(x = V3),

so that x = 0, +V3 are the three critical numbers of f. The first derivative sign chart for f is

2Consider the functions f(x) = x*, g(x) = —x%, and h(x) = x at the critical point p = 0.
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given in Figure 3.1.11.

f1(0) =32 (x+V3)(x— V3)

+-— ++- +4 - +++
sign(/") + - - +
1 1 1
1 1 1
behav(f) INC _ 3 DEC DEC 3 INC

Figure 3.1.11: The first derivative sign chart for f when f’(x) = 3x* — 9x% = 3x%(x? - 3).

We see that f is increasing on the intervals (—co, —V3) and (V3, ), and f is decreasing on
(—\/5, 0) and (0, \/5) By the first derivative test, this information tells us that f has a local
maximum at x = —V3 and a local minimum at x = V3. Although f also has a critical
number at x = 0, neither a maximum nor minimum occurs there since f’ does not change
sign at x = 0.

Next, we move on to investigate concavity. Differentiating f’(x) = 3x* — 9x2, we see that
f”(x) = 12x3 — 18x. Since we are interested in knowing the intervals on which f” is positive
and negative, we first find where f”(x) = 0. Observe that

3 3 3
= 3— = 2—— = - —_ -
0=12x"> —18x = 12x (x 2) 12x (x + \/;) (x 2).

This equation has solutions x = 0, i\/g . Building a sign chart for f” in the exact same way
we do for f’, we see the result shown in Figure 3.1.12.

_ﬂ%x)zzllx(x%—w/%) ( - %)

——= —+- ++ - +++
sign(f") - - - +
1 1 1
1 1 1
behav(f) CCD ;s CU , CCD 1 ccu
V2 2

Figure 3.1.12: The second derivative sign chart for f when
£7(x) = 12x% = 18x = 1222 (x* - ).
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Therefore, f is concave down on the intervals (—oo, —\/g) and (0, \/g ), and concave up on
(- %, 0) and ( %, 00).

Putting all of this information together, we now see a complete and accurate possible graph
of f in Figure 3.1.13.

A
5 f
C
D
E
-3 V15 V15 /3

Figure 3.1.13: A possible graph of the function f in Example 3.1.10.

The point A = (-3, f (-V3)) is a local maximum, because f is increasing prior to A and
decreasing after; similarly, the point E = (V3, f(V3) is a local minimum. Note, too, that f is
concave down at A and concave up at B, which is consistent both with our second derivative
sign chart and the second derivative test. At points B and D, concavity changes, as we saw
in the results of the second derivative sign chart in Figure 3.1.12. Finally, at point C, f has a
critical point with a horizontal tangent line, but neither a maximum nor a minimum occurs
there, since f is decreasing both before and after C. It is also the case that concavity changes
at C.

While we completely understand where f is increasing and decreasing, where f is concave
up and concave down, and where f has relative extremes, we do not know any specific
information about the y-coordinates of points on the curve. For instance, while we know

that f has a local maximum at x = —V3, we don’t know the value of that maximum because
we do not know f(—V3). Any vertical translation of our sketch of f in Figure 3.1.13 would
satisfy the given criteria for f.

Points B, C, and D in Figure 3.1.13 are locations at which the concavity of f changes. We
give a special name to any such point.

Definition 3.1.14 If p is a value in the domain of a continuous function f at which f changes
concavity, then we say that (p, f(p)) is an inflection point (or point of inflection) of f.

Just as we look for locations where f changes from increasing to decreasing at points where
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f'(p) =0or f’'(p) is undefined, so too we find where f”(p) = 0 or f”(p) is undefined to see
if there are points of inflection at these locations.

At this point in our study, it is important to remind ourselves of the big picture that de-
rivatives help to paint: the sign of the first derivative f” tells us whether the function f is
increasing or decreasing, while the sign of the second derivative f” tells us how the function
f is increasing or decreasing.

Activity 3.1.3. Suppose that g is a function whose second derivative, g”, is given by
the graph in Figure 3.1.15.

NPZE

Figure 3.1.15: The graph of y = g”(x).

a. Find the x-coordinates of all points of inflection of g.
b. Fully describe the concavity of g by making an appropriate sign chart.

c. Suppose you are given that g'(—1.67857351) = 0. Is there is a local maximum,
local minimum, or neither (for the function g) at this critical number of g, or is
it impossible to say? Why?

d. Assuming that g”(x) is a polynomial (and that all important behavior of g” is
seen in the graph above), what degree polynomial do you think g(x) is? Why?

As we will see in more detail in the following section, derivatives also help us to understand
families of functions that differ only by changing one or more parameters. For instance,
we might be interested in understanding the behavior of all functions of the form f(x) =
a(x —h)? + k where a, h, and k are parameters. Each parameter has considerable impact on
how the graph appears.

165



Chapter 3 Using Derivatives

Activity 3.1.4. Consider the family of functions given by h(x) = x2 + cos(kx), where k
is an arbitrary positive real number.

a. Use a graphing utility to sketch the graph of / for several different k-values,
including k = 1,3,5,10. Plot h(x) = x? + cos(3x) on the axes provided. What
is the smallest value of k at which you think you can see (just by looking at the
graph) at least one inflection point on the graph of /?

12¢

2 L2

Figure 3.1.16: Axes for plotting y = h(x).

b. Explain why the graph of & has no inflection points if k < V2, but infinitely
many inflection points if k > \/5

c. Explain why, no matter the value of k, /1 can only have finitely many critical
numbers.

3.1.3 Summary

¢ The critical numbers of a continuous function f are the values of p for which f’(p) =0
or f’(p) does not exist. These values are important because they identify horizontal
tangent lines or corner points on the graph, which are the only possible locations at
which a local maximum or local minimum can occur.

¢ Given a differentiable function f, whenever f” is positive, f is increasing; whenever
f’ is negative, f is decreasing. The first derivative test tells us that at any point where
f changes from increasing to decreasing, f has a local maximum, while conversely at
any point where f changes from decreasing to increasing f has a local minimum.

¢ Given a twice differentiable function f, if we have a horizontal tangent line at x = p
and f”(p) is nonzero, the sign of f” tells us the concavity of fand hence whether f has
a maximum or minimum at x = p. In particular, if f’(p) = 0 and f”(p) < 0, then f is
concave down at p and f has a local maximum there, while if f'(p) = 0and f”(p) > 0,
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then f has alocal minimum at p. If f’(p) = 0and f”(p) = 0, then the second derivative
does not tell us whether f has a local extreme at p or not.

3.1.4 Exercises

1.  Finding critical points and inflection points. Use a graph below of f(x) = In(2x? + 1) K&
to estimate the x-values of any critical points and inflection points of f(x). Next, use "
derivatives to find the x-values of any critical points and inflection points exactly.

’]

=1

2.  Finding inflection points. Find the inflection points of f(x) = 4x* + 55x3 — 21x2 + 3.

3. Matching graphs of f, f’, f”. The following shows graphs of three functions, A (in B8
black), B (in blue), and C (in green). If these are the graphs of three functions f, f’, and "=
f”, identify which is which.

2N

4.  This problem concerns a function about which the following information is known:

* f is a differentiable function defined at every real number x

* f(0)=-1/2
e y = f’(x) has its graph given at center in Figure 3.1.17
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f/

N

Figure 3.1.17: At center, a graph of y = f’(x); at left, axes for plotting y = f(x); at
right, axes for plotting y = f”(x).

a. Construct a first derivative sign chart for f. Clearly identify all critical numbers
of f, where f is increasing and decreasing, and where f has local extrema.

b. On the right-hand axes, sketch an approximate graph of y = f”(x).

c. Construct a second derivative sign chart for f. Clearly identify where f is concave
up and concave down, as well as all inflection points.

d. On the left-hand axes, sketch a possible graph of y = f(x).

5.  Suppose that g is a differentiable function and ¢’(2) = 0. In addition, suppose that on
1 <x <2and 2 < x < 3itis known that g’(x) is positive.

a. Does g have a local maximum, local minimum, or neither at x = 2? Why?

b. Suppose that g”(x) exists for every x such that 1 < x < 3. Reasoning graphically,
describe the behavior of g”(x) for x-values near 2.

c. Besides being a critical number of g, what is special about the value x = 2 in terms
of the behavior of the graph of g?
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6.  Suppose that h is a differentiable function whose first derivative is given by the graph
in Figure 3.1.18.

a. How many real number solutions
can the equation h(x) = 0 have? T n
Why?

b. If h(x) = 0 has two distinct real so-
lutions, what can you say about the
signs of the two solutions? Why?

¢. Assume that lim,_ h'(x) = 3,
as appears to be indicated in Fig-
ure 3.1.18. How will the graph of
y = h(x) appear as x — c0? Why?

d. Describe the concavity of y = h(x)
as fully as you can from the pro-
vided information.

Figure 3.1.18: The graph of y = h'(x).
7.  Let p be a function whose second derivative is p”(x) = (x + 1)(x —2)e™™.
a. Construct a second derivative sign chart for p and determine all inflection points

of p.
V5-1

b. Suppose you also know that x = 5= is a critical number of p. Does p have a
local minimum, local maximum, or neither at x = @? Why?
c. If the point (2, i—f) lies on the graph of y = p(x) and p’(2) = —E%, find the equation

of the tangent line to y = p(x) at the point where x = 2. Does the tangent line lie
above the curve, below the curve, or neither at this value? Why?
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3.2 Using derivatives to describe families of functions

Motivating Questions

* Given a family of functions that depends on one or more parameters, how does the
shape of the graph of a typical function in the family depend on the value of the
parameters?

¢ How can we construct first and second derivative sign charts of functions that depend
on one or more parameters while allowing those parameters to remain arbitrary con-
stants?

Mathematicians are often interested in making general observations, say by describing pat-
terns that hold in a large number of cases. Think about the Pythagorean Theorem: it doesn’t
tell us something about a single right triangle, but rather a fact about every right triangle. In
the next part of our studies, we use calculus to make general observations about families of
functions that depend on one or more parameters. People who use applied mathematics,
such as engineers and economists, often encounter the same types of functions where only
small changes to certain constants occur. These constants are called parameters.

d+a }

f@t)=asin(b(t—c)) +d

c 2n
c+3

Figure 3.2.1: The graph of f(t) = asin(b(t — c¢)) + d based on parameters 4, b, ¢, and d.

You are already familiar with certain families of functions. For example, f(t) = asin(b(t —
¢)) + d is a stretched and shifted version of the sine function with amplitude a, period 2%,
phase shift ¢, and vertical shift d. We know that a affects the size of the oscillation, b the
rapidity of oscillation, and ¢ where the oscillation starts, as shown in Figure 3.2.1, while d
affects the vertical positioning of the graph.

As another example, every function of the form y = mx + b is a line with slope m and y-
intercept (0, b). The value of m affects the line’s steepness, and the value of b situates the line
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vertically on the coordinate axes. These two parameters describe all possible non-vertical
lines.

For other less familiar families of functions, we can use calculus to discover where key behav-
ior occurs: where members of the family are increasing or decreasing, concave up or concave
down, where relative extremes occur, and more, all in terms of the parameters involved. To
get started, we revisit a common collection of functions to see how calculus confirms things
we already know.

Preview Activity 3.2.1. Let a, i, and k be arbitrary real numbers with a # 0, and let f
be the function given by the rule f(x) = a(x — h)* + k.

a. What familiar type of function is f? What information do you know about f
just by looking at its form? (Think about the roles of 4, i, and k.)

b. Next we use some calculus to develop familiar ideas from a different perspec-
tive. To start, treat a, i, and k as constants and compute f”(x).

c. Find all critical numbers of f. (These will depend on at least one of a, &, and k.)
d. Assume that a < 0. Construct a first derivative sign chart for f.

e. Based on the information you’ve found above, classify the critical values of f as
maxima or minima.

3.2.1 Describing families of functions in terms of parameters

Our goal is to describe the key characteristics of the overall behavior of each member of a
family of functions in terms of its parameters. By finding the first and second derivatives
and constructing sign charts (each of which may depend on one or more of the parameters),
we can often make broad conclusions about how each member of the family will appear.

Example 3.2.2 Consider the two-parameter family of functions given by g(x) = axe "%,

where a and b are positive real numbers. Fully describe the behavior of a typical mem-
ber of the family in terms of a4 and b, including the location of all critical numbers, where g
is increasing, decreasing, concave up, and concave down, and the long term behavior of g.

Solution. We begin by computing g’(x). By the product rule,

’ d b -b d
g(x)=axa [e "] +e "%[ax].
By applying the chain rule and constant multiple rule, we find that

g (x) = axe P (=b) + e7"¥(a).

To find the critical numbers of g, we solve the equation g’(x) = 0. By factoring g’(x), we find

0=ae " (=bx +1).
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Since we are given that a # 0 and we know that e~?* # 0 for all values of x, the only way this
equation can hold is when —bx + 1 = 0. Solving for x, we find x = %, and this is therefore
the only critical number of g.

We construct the first derivative sign chart for g that is shown in Figure 3.2.3.

g (x) = ae (1 — bx)

++ +—
sign(g’) + -
1
|
behav(g) INC DEC

=

Figure 3.2.3: The first derivative sign chart for g(x) = axe~.

Because the factor ae "~ is always positive, the sign of g’ depends on the linear factor (1-bx),

which is positive for x < } and negative for x > . Hence we can not only conclude that g is
always increasing for x < % and decreasing for x > %, but also that g has a global maximum
at (%, g(%)) and no local minimum.

We turn next to analyzing the concavity of g. With g’(x) = —a bxe b +ae7%, we differentiate
to find that
9" (x) = —abxe™*(=b) + e™"*(—ab) + ae~"*(~b).

Combining like terms and factoring, we now have
g”(x) = ab?xe™" — 2abe™" = abe ™" (bx - 2).

We observe that abe™"* is always positive, and thus the sign of g” depends on the sign of

(bx — 2), which is zero when x = % Since b is positive, the value of (bx — 2) is negative for

x < % and positive for x > 2. The sign chart for g” is shown in Figure 3.2.4. Thus, g is

<.
concave down for all x < # and concave up for all x > 2.
Finally, we analyze the long term behavior of g by considering two limits. First, we note that

. oax
bx = lim —.

lim g(x) = lim axe”
xX—00 x—oo pbUX

X—00
This limit has indeterminate form <2, so we apply L'Hopital’s Rule and find that lim g(x) = 0.
X—00

In the other direction,

lim g(x) = lim axe " = —co,
X——00 X——00

because ax — —oo and e™’¥ — oo as x — —oco. Hence, as we move left on its graph, g
decreases without bound, while as we move to the right, g(x) — 0.
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g (x) = abe " (bx —2)

+— ++
sign(g") - +
l
1
behav(g) cco CCU
b

Figure 3.2.4: The second derivative sign chart for g(x) = axe™*.

All of this information now helps us produce the graph of a typical member of this family
of functions without using a graphing utility (and without choosing particular values for a
and b), as shown in Figure 3.2.5.

global max
inflection pt

g(x) = axe"*

S =
Nl ]

Figure 3.2.5: The graph of g(x) = axe™"~.

Note that the value of b controls the horizontal location of the global maximum and the
inflection point, as neither depends on a. The value of a affects the vertical stretch of the
graph. For example, the global maximum occurs at the point (3, 7(3)) = (3, 4e71), so the
larger the value of a, the greater the value of the global maximum.

The work we’ve completed in Example 3.2.2 can often be replicated for other families of
functions that depend on parameters. Normally we are most interested in determining all
critical numbers, a first derivative sign chart, a second derivative sign chart, and the limit
of the function as x — co. Throughout, we prefer to work with the parameters as arbitrary
constants. In addition, we can experiment with some particular values of the parameters
present to reduce the algebraic complexity of our work. The following activities offer several
key examples where we see that the values of the parameters substantially affect the behavior
of individual functions within a given family.
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a.

a.

Activity 3.2.2. Consider the family of functions defined by p(x) = x3—ax, wherea # 0
is an arbitrary constant.

Find p’(x) and determine the critical numbers of p. How many critical numbers
does p have?

Construct a first derivative sign chart for p. What can you say about the over-
all behavior of p if the constant a is positive? Why? What if the constant a is
negative? In each case, describe the relative extremes of p.

Find p”(x) and construct a second derivative sign chart for p. What does this
tell you about the concavity of p? What role does a play in determining the
concavity of p?

. Without using a graphing utility, sketch and label typical graphs of p(x) for the

cases where a > 0 and a < 0. Label all inflection points and local extrema.

. Finally, use a graphing utility to test your observations above by entering and

plotting the function p(x) = x* — ax for at least four different values of a. Write

several sentences to describe your overall conclusions about how the behavior
of p depends on a.

Activity 3.2.3. Consider the two-parameter family of functions of the form h(x) =
a(l-

a.

e~*), where a and b are positive real numbers.

Find the first derivative and the critical numbers of k. Use these to construct a
first derivative sign chart and determine for which values of x the function & is
increasing and decreasing.

Find the second derivative and build a second derivative sign chart. For which
values of x is a function in this family concave up? concave down?

What is the value of limy o a(1 — e7%)? lim,_,_o a(1 — e7%)?
How does changing the value of b affect the shape of the curve?

Without using a graphing utility, sketch the graph of a typical member of this
family. Write several sentences to describe the overall behavior of a typical func-
tion I and how this behavior depends on 4 and b.

Activity 3.2.4. Let L(¢t) = —A _ where A, ¢, and k are all positive real numbers.

1+ce~kt”

Observe that we can equivalently write L(t) = A(1 + ce™*)~1. Find L’(t) and
explain why L has no critical numbers. Is L always increasing or always de-
creasing? Why?

Given the fact that
L/(1) = Ackzett £ 1
- (1+ cekt)3’
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find all values of ¢ such that L”(¢) = 0 and hence construct a second derivative
sign chart. For which values of t is a function in this family concave up? concave
down?

. . A . A
¢. What is the value of lim;_, e Tt im0 7757
d. Find the value of L(x) at the inflection point found in (b).

e. Without using a graphing utility, sketch the graph of a typical member of this
family. Write several sentences to describe the overall behavior of a typical func-
tion L and how this behavior depends on A, ¢, and k number.

f. Explain why it is reasonable to think that the function L(t) models the growth
of a population over time in a setting where the largest possible population the
surrounding environment can support is A.

3.2.2 Summary

¢ Given a family of functions that depends on one or more parameters, by investigating
how critical numbers and locations where the second derivative is zero depend on the
values of these parameters, we can often accurately describe the shape of the function
in terms of the parameters.

e In particular, just as we can created first and second derivative sign charts for a single
function, we often can do so for entire families of functions where critical numbers
and possible inflection points depend on arbitrary constants. These sign charts then
reveal where members of the family are increasing or decreasing, concave up or con-
cave down, and help us to identify relative extremes and inflection points.

3.2.3 Exercises

1. Drug dosage with a parameter. For some positive constant C, a patient’s tempera- R4
ture change, T, due to a dose, D, of a drug is given by T = (§ — £) D?. What dosage "™
maximizes the temperature change?

The sensitivity of the body to the drug is defined as dT/dD. What dosage maximizes
sensitivity?

2. Using the graph of g’. The figure below gives the behavior of the derivative of g(x)

on -2 < x < 2. Sketch a graph of g(x) and use your sketch to answer the following "
questions.

A. Where does the graph of g(x) have inflection points?

B. Where are the global maxima and minima of g on [-2, 2]?

C. If g(-2) = -8, what are possible values for g(0)? How is the value of g(2) related to
the value of g(0)?
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Graph of g'(x) (not g(x))

3.  Consider the one-parameter family of functions given by p(x) = x> — ax?, where a > 0.

a. Sketch a plot of a typical member of the family, using the fact that each is a cubic
polynomial with a repeated zero at x = 0 and another zero at x = 4.

b. Find all critical numbers of p.

c. Compute p” and find all values for which p”(x) = 0. Hence construct a second
derivative sign chart for p.

d. Describe how the location of the critical numbers and the inflection point of p
change as a changes. That is, if the value of a is increased, what happens to the
critical numbers and inflection point?

4. Letq(x)= ﬁ;_xc be a one-parameter family of functions where ¢ > 0.
a. Explain why g has a vertical asymptote at x = c.
b. Determine limy_,« q(x) and lim,_,_o g(x).
c. Compute g’(x) and find all critical numbers of g.

d. Construct a first derivative sign chart for 4 and determine whether each critical
number leads to a local minimum, local maximum, or neither for the function 4.

e. Sketch a typical member of this family of functions with important behaviors
clearly labeled.

x—m)2

_ lamm)®
5. LetE(x)=e 2? ,where m is any real number and s is a positive real number.

a. Compute E’(x) and hence find all critical numbers of E.

b. Construct a first derivative sign chart for E and classify each critical number of
the function as a local minimum, local maximum, or neither.

c. It can be shown that E”(x) is given by the formula

(em)? ((x - m)* - 52)

E'(x)=e 22 1
S

Find all values of x for which E”(x) = 0.
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d. Determine lim,_,o E(x) and lim,_,_c E(x).

e. Construct a labeled graph of a typical function E that clearly shows how impor-
tant points on the graph of y = E(x) depend on m and s.
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3.3 Global Optimization

Motivating Questions

¢ What are the differences between finding relative extreme values and global extreme

values of a function?

* How is the process of finding the global maximum or minimum of a function over
the function’s entire domain different from determining the global maximum or min-

imum on a restricted domain?

* For a function that is guaranteed to have both a global maximum and global min-
imum on a closed, bounded interval, what are the possible points at which these

extreme values occur?

We have seen that we can use the first derivative of a function to determine where the func-
tion is increasing or decreasing, and the second derivative to know where the function is
concave up or concave down. This information helps us determine the overall shape and
behavior of the graph, as well as whether the function has relative extrema.

Remember the difference between a relative maximum and a global maximum: there is a
relative maximum of f atx = pif f(p) > f(x) for all x near p, while there is a global maximum

atp if f(p) > f(x) for all x in the domain of f.

For instance, in Figure 3.3.1, we see a func-
tion f that has a global maximum at x = ¢
and a relative maximum at x = a, since f(c)
is greater than f(x) for every value of x, while
f(a) is only greater than the value of f(x) for
x near 4. Since the function appears to de-
crease without bound, f has no global min-
imum, though clearly f has a relative mini-
mum at x = b.

Our emphasis in this section is on finding the
global extreme values of a function (if they ex-
ist), either over its entire domain or on some
restricted portion.
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Preview Activity 3.3.1. Let f(x) =2+ 1+(§9’—+1)2
a. Determine all of the critical numbers of f.

b. Construct a first derivative sign chart for f and thus determine all intervals on
which f is increasing or decreasing.

c. Does f have a global maximum? If so, why, and what is its value and where is
the maximum attained? If not, explain why.

d. Determine limy_,« f(x) and limy_,_ f(x).
e. Explain why f(x) > 2 for every value of x.

f. Does f have a global minimum? If so, why, and what is its value and where is
the minimum attained? If not, explain why.

3.3.1 Global Optimization

In Figure 3.3.1 and Preview Activity 3.3.1, we were interested in finding the global minimum
and global maximum for f on its entire domain. At other times, we might focus on some
restriction of the domain.

For example, rather than considering f(x) = 2+ for every value of x, perhaps instead

Ty
we are only interested in those x for which 0 < x < 4, and we would like to know which
values of x in the interval [0, 4] produce the largest possible and smallest possible values of
f. We are accustomed to critical numbers playing a key role in determining the location of
extreme values of a function; now, by restricting the domain to an interval, it makes sense
that the endpoints of the interval will also be important to consider, as we see in the following
activity. When limiting ourselves to a particular interval, we will often refer to the absolute

maximum or minimum value, rather than the global maximum or minimum.

Activity 3.3.2. Let g(x) = x5 - 2x + 2.

a. Find all critical numbers of g that lie in the interval -2 < x < 3.
b. Use a graphing utility to construct the graph of g on the interval -2 < x < 3.

c. From the graph, determine the x-values at which the absolute minimum and
absolute maximum of g occur on the interval [-2, 3].

d. How do your answers change if we instead consider the interval -2 < x < 2?

e. What if we instead consider the interval -2 < x < 1?

In Activity 3.3.2, we saw how the absolute maximum and absolute minimum of a function on
aclosed, bounded interval [a, b], depend not only on the critical numbers of the function, but
also on the values of 2 and b. These observations demonstrate several important facts that
hold more generally. First, we state an important result called the Extreme Value Theorem.
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The Extreme Value Theorem.

If f is a continuous function on a closed interval [a, b], then f attains both an absolute
minimum and absolute maximum on [a, b]. That is, for some value x,, such that
a < xy < b, it follows that f(x,,) < f(x) for all x in [a,b]. Similarly, there is a
value xp in [a, b] such that f(xp) > f(x) for all x in [a, b]. Letting m = f(x,,) and
M = f(xp), it follows that m < f(x) < M for all x in [a, b].

The Extreme Value Theorem tells us that on any closed interval [a, b], a continuous function
has to achieve both an absolute minimum and an absolute maximum. The theorem does not
tell us where these extreme values occur, but rather only that they must exist. As we saw
in Activity 3.3.2, the only possible locations for relative extremes are at the endpoints of the
interval or at a critical number.

Note 3.3.2 Thus, we have the following approach to finding the absolute maximum and
minimum of a continuous function f on the interval [a, b]:

¢ find all critical numbers of f that lie in the interval;

¢ evaluate the function f at each critical number in the interval and at each endpoint of
the interval;

¢ from among those function values, the smallest is the absolute minimum of f on the
interval, while the largest is the absolute maximum.

Activity 3.3.3. Find the exact absolute maximum and minimum of each function on
the stated interval.

a. h(x)=xe™*,[0,3]

b. p(t) = sin(t) + cos(t), [-7, 5]
e q(x) = 25,[3,7]

d. f(x)=4-e 2" (—c0,00)
e. h(x)=xe ", |0, %] (a >0)

f. f(x)=b—e ™, (=00,00),a,b >0

The interval we choose has nearly the same influence on extreme values as the function un-
der consideration. Consider, for instance, the function pictured in Figure 3.3.3. In sequence,
from left to right, the interval under consideration is changed from [-2, 3] to [-2, 2] to [-2, 1].

¢ On the interval [-2, 3], there are two critical numbers, with the absolute minimum at
one critical number and the absolute maximum at the right endpoint.

¢ On the interval [-2,2], both critical numbers are in the interval, with the absolute
minimum and maximum at the two critical numbers.

¢ On the interval [-2, 1], just one critical number lies in the interval, with the absolute
maximum at one critical number and the absolute minimum at one endpoint.
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Figure 3.3.3: A function g considered on three different intervals.
Remember to consider only the critical numbers that lie within the interval.

3.3.2 Moving toward applications

We conclude this section with an example of an applied optimization problem. It highlights
the role that a closed, bounded domain can play in finding absolute extrema.

Example 3.3.4 A 20 cm piece of wire is cut into two pieces. One piece is used to form a square
and the other to form an equilateral triangle. How should the wire be cut to maximize the
total area enclosed by the square and triangle? to minimize the area?

Solution. We begin by sketching a picture that illustrates the situation. The variable in the
problem is where we decide to cut the wire. We thus label the cut point at a distance x from
one end of the wire, and note that the remaining portion of the wire then has length 20 — x

As shown in Figure 3.3.5, we see that the x cm of wire that is used to form the equilateral
triangle with three sides of length 5. For the remaining 20 — x cm of wire, the square that
results will have each side of length 2%,

W=

Figure 3.3.5: A 20 cm piece of wire cut into two pieces, one of which forms an equilateral
triangle, the other which yields a square.

At this point, we note that there are obvious restrictions on x: in particular, 0 < x < 20. In
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the extreme cases, all of the wire is being used to make just one figure. For instance, if x = 0,
then all 20 cm of wire are used to make a square that is 5 x 5.

Now, our overall goal is to find the minimum and maximum areas that can be enclosed.

Because the height of an equilateral triangle is V3 times half the length of the base, the area
of the triangle is

2
The area of the square is Ag = s2 = (24%)". Therefore, the total area function is

=V%¥+(m—xf'

Al = 3¢ 4

Remember that we are considering this function only on the restricted domain [0, 20].

Differentiating A(x), we have

Alx)y=—+2 )

f? (m—x)(l) V3.1 5

When we set A’(x) = 0, we find that x = 4\1/229 ~ 11.3007 is the only critical number of A in
the interval [0, 20].

Evaluating A at the critical number and endpoints, we see that

V3(80_y2 20— 180 2
. A )= 4f9+« ;mﬂ ~10.8741

o A(0)=25

o A(20) = ¥(400) = 10043 ~ 19.2450

Thus, the absolute minimum occurs when x ~ 11.3007 and results in the minimum area of
approximately 10.8741 square centimeters. The absolute maximum occurs when we invest
all of the wire in the square (and none in the triangle), resulting in 25 square centimeters of
area. These results are confirmed by a plot of ¥ = A(x) on the interval [0, 20], as shown in
Figure 3.3.6.
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5 10 15 20

Figure 3.3.6: A plot of the area function from Example 3.3.4.

Activity 3.3.4. A piece of cardboard that is 10 x 15 (each measured in inches) is being
made into a box without a top. To do so, squares are cut from each corner of the box
and the remaining sides are folded up. If the box needs to be at least 1 inch deep and
no more than 3 inches deep, what is the maximum possible volume of the box? what
is the minimum volume? Justify your answers using calculus.

a. Draw alabeled diagram that shows the given information. What variable should
we introduce to represent the choice we make in creating the box? Label the di-
agram appropriately with the variable, and write a sentence to state what the
variable represents.

b. Determine a formula for the function V (that depends on the variable in (a)) that
tells us the volume of the box.

c. What is the domain of the function V? That is, what values of x make sense for
input? Are there additional restrictions provided in the problem?

d. Determine all critical numbers of the function V.

e. Evaluate V at each of the endpoints of the domain and at any critical numbers
that lie in the domain.

f. What is the maximum possible volume of the box? the minimum?

Example 3.3.4 and Activity 3.3.4 illustrate standard steps that we undertake in almost every
applied optimization problem: we draw a picture to demonstrate the situation, introduce
one or more variables to represent quantities that are changing, find a function that models
the quantity to be optimized, and then decide on an appropriate domain for that function.
Once that is done, we are in the familiar situation of finding the absolute minimum and
maximum of a function over a particular domain, so we apply the calculus ideas that we
have been studying to this point in Chapter 3.
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3.3.3 Summary

* To find relative extreme values of a function, we use a first derivative sign chart and
classify all of the function’s critical numbers. If instead we are interested in absolute
extreme values, we first decide whether we are considering the entire domain of the
function or a particular interval.

¢ In the case of finding global extremes over the function’s entire domain, we again use
a first or second derivative sign chart. If we are working to find absolute extremes on
a restricted interval, then we first identify all critical numbers of the function that lie
in the interval.

¢ For a continuous function on a closed, bounded interval, the only possible points at
which absolute extreme values occur are the critical numbers and the endpoints. Thus,
we simply evaluate the function at each endpoint and each critical number in the in-
terval, and compare the results to decide which is largest (the absolute maximum) and
which is smallest (the absolute minimum).

3.3.4 Exercises

1. Based on the given information about each function, decide whether the function has
global maximum, a global minimum, neither, both, or that it is not possible to say with-
out more information. Assume that each function is twice differentiable and defined
for all real numbers, unless noted otherwise. In each case, write one sentence to explain
your conclusion.

a. f isa function such that f”(x) < 0 for every x.

b. g is a function with two critical numbers a and b (where a < b), and g’(x) < 0 for
x<a,g'(x)<0fora<x<b,and g’(x) > 0 for x > b.

¢. h is a function with two critical numbers a and b (where a < b), and h'(x) < 0
forx < a, W(x) > Ofora < x < b, and h'(x) < 0 for x > b. In addition,
limy_,c 1(x) = 0 and lim,_,_ k(x) = 0.

d. p is a function differentiable everywhere except at x = a and p”(x) > O forx < a
and p”(x) < 0 for x > a.

2. For each family of functions that depends on one or more parameters, determine the
function’s absolute maximum and absolute minimum on the given interval.

a. p(x) = x® —4a2x,[0,a] (a > 0)

b. r(x) = axe ™, [5,2](a>0,b>1)
c. w(x) = a(l—e™%),[b,3b] (a,b > 0)
d. s(x) = sin(kx), [%&, 2] (k > 0)
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For each of the functions described below (each continuous on [a, b]), state the loca-
tion of the function’s absolute maximum and absolute minimum on the interval [a, b],
or say there is not enough information provided to make a conclusion. Assume that
any critical numbers mentioned in the problem statement represent all of the critical
numbers the function has in [a, b]. In each case, write one sentence to explain your
answer.

a. f'(x) <0forall xin [a,b]

b. g has a critical number at ¢ such thata < ¢ < b and g’(x) > 0 for x < c and
g'(x) <0forx >c¢

¢. h(a) = h(b) and h”’(x) < 0 for all x in [a, b]
d. p(a) >0, p(b) <0, and for the critical number ¢ such thata < ¢ < b, p’(x) < 0 for
x <cand p’(x) >0forx > ¢

Let s(t) = 3sin(2(t — §)) + 5. Find the exact absolute maximum and minimum of s on
the provided intervals by testing the endpoints and finding and evaluating all relevant
critical numbers of s.

a. [%/%—( C. [0,27?]
b. [0, 5 d. [%,%’I]
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3.4 Applied Optimization

Motivating Questions

¢ In a setting where a situation is described for which optimal parameters are sought,
how do we develop a function that models the situation and use calculus to find the
desired maximum or minimum?

Near the conclusion of Section 3.3, we considered two optimization problems where deter-
mining the function to be optimized was part of the problem. In Example 3.3.4, we sought
to use a single piece of wire to build an equilateral triangle and square in order to maximize
the total combined area enclosed. In the subsequent Activity 3.3.4, we investigated how
the volume of a box constructed from a piece of cardboard by removing squares from each
corner and folding up the sides depends on the size of the squares removed.

In neither of these problems was a function to optimize explicitly provided. Rather, we
first tried to understand the problem by drawing a figure and introducing variables, and
then sought to develop a formula for a function that modeled the quantity to be optimized.
Once the function was established, we then considered what domain was appropriate. At
that point, we were finally ready to apply the ideas of calculus to determine the absolute
minimum or maximum.

Throughout what follows in the current section, the primary emphasis is on the reader solv-
ing problems. Initially, some substantial guidance is provided, with the problems progress-
ing to require greater independence as we move along.

Preview Activity 3.4.1. According to U.S. postal regulations, the girth plus the length
of a parcel sent by mail may not exceed 108 inches, where by “girth” we mean the
perimeter of the smallest end. What is the largest possible volume of a rectangular
parcel with a square end that can be sent by mail? What are the dimensions of the
package of largest volume?

Figure 3.4.1: A rectangular parcel with a square end.

a. Let x represent the length of one side of the square end and y the length of
the longer side. Label these quantities appropriately on the image shown in
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Figure 3.4.1.

b. What is the quantity to be optimized in this problem? Find a formula for this
quantity in terms of x and y.

c. The problem statement tells us that the parcel’s girth plus length may not ex-
ceed 108 inches. In order to maximize volume, we assume that we will actually
need the girth plus length to equal 108 inches. What equation does this produce
involving x and y?

d. Solve the equation you found in (c) for one of x or y (whichever is easier).

e. Now use your work in (b) and (d) to determine a formula for the volume of the
parcel so that this formula is a function of a single variable.

f. Over what domain should we consider this function? Note that both x and y
must be positive; how does the constraint that girth plus length is 108 inches
produce intervals of possible values for x and y?

g. Find the absolute maximum of the volume of the parcel on the domain you
established in (f) and hence also determine the dimensions of the box of greatest
volume. Justify that you've found the maximum using calculus.

3.4.1 More applied optimization problems

Many of the steps in Preview Activity 3.4.1 are ones that we will execute in any applied opti-
mization problem. We briefly summarize those here to provide an overview of our approach
in subsequent questions.

Note 3.4.2

¢ Draw a picture and introduce variables. It is essential to first understand what quan-
tities are allowed to vary in the problem and then to represent those values with vari-
ables. Constructing a figure with the variables labeled is almost always an essential
first step. Sometimes drawing several diagrams can be especially helpful to get a sense
of the situation. A nice example of this can be seen at http://gvsu.edu/s/99, where
the choice of where to bend a piece of wire into the shape of a rectangle determines
both the rectangle’s shape and area.

¢ Identify the quantity to be optimized as well as any key relationships among the vari-
able quantities. Essentially this step involves writing equations that involve the vari-
ables that have been introduced: one to represent the quantity whose minimum or
maximum is sought, and possibly others that show how multiple variables in the prob-
lem may be interrelated.

* Determine a function of a single variable that models the quantity to be optimized;
this may involve using other relationships among variables to eliminate one or more
variables in the function formula. For example, in Preview Activity 3.4.1, we initially
found that V = x2y, but then the additional relationship that 4x + y = 108 (girth plus
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length equals 108 inches) allows us to relate x and y and thus observe equivalently that
y = 108 — 4x. Substituting for y in the volume equation yields V(x) = x?(108 — 4x),
and thus we have written the volume as a function of the single variable x.

* Decide the domain on which to consider the function being optimized. Often the phys-
ical constraints of the problem will limit the possible values that the independent vari-
able can take on. Thinking back to the diagram describing the overall situation and
any relationships among variables in the problem often helps identify the smallest
and largest values of the input variable.

¢ Use calculus to identify the absolute maximum and/or minimum of the quantity be-
ing optimized. This always involves finding the critical numbers of the function first.
Then, depending on the domain, we either construct a first derivative sign chart (for
an open or unbounded interval) or evaluate the function at the endpoints and critical
numbers (for a closed, bounded interval), using ideas we’ve studied so far in Chapter 3.

¢ Finally, we make certain we have answered the question: does the question seek the
absolute maximum of a quantity, or the values of the variables that produce the max-
imum? That is, finding the absolute maximum volume of a parcel is different from
finding the dimensions of the parcel that produce the maximum.

Activity 3.4.2. A soup can in the shape of a right circular cylinder is to be made from
two materials. The material for the side of the can costs $0.015 per square inch and the
material for the lids costs $0.027 per square inch. Suppose that we desire to construct
a can that has a volume of 16 cubic inches. What dimensions minimize the cost of the
can?

a. Draw a picture of the can and label its dimensions with appropriate variables.

b. Use your variables to determine expressions for the volume, surface area, and
cost of the can.

c. Determine the total cost function as a function of a single variable. What is the
domain on which you should consider this function?

d. Find the absolute minimum cost and the dimensions that produce this value.

Familiarity with common geometric formulas is particularly helpful in problems such as the
one in Activity 3.4.2. Sometimes those involve perimeter, area, volume, or surface area. At
other times, the constraints of a problem introduce right triangles (where the Pythagorean
Theorem applies) or other functions whose formulas provide relationships among the vari-
ables.

Activity 3.4.3. A hiker starting at a point P on a straight road walks east towards point
Q, which is on the road and 3 kilometers from point P.

Two kilometers due north of point Q is a cabin. The hiker will walk down the road
for a while, at a pace of 8 kilometers per hour. At some point Z between P and Q, the
hiker leaves the road and makes a straight line towards the cabin through the woods,
hiking at a pace of 3 kph, as pictured in Figure 3.4.3. In order to minimize the time to
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go from P to Z to the cabin, where should the hiker turn into the forest?

Figure 3.4.3: A hiker walks from P to Z to the cabin, as pictured.

In more geometric problems, we often use curves or functions to provide natural constraints.
For instance, we could investigate which isosceles triangle that circumscribes a unit circle has
the smallest area, which you can explore for yourself at http:/ /gvsu.edu/s/9b. Or similarly,
for a region bounded by a parabola, we might seek the rectangle of largest area that fits
beneath the curve, as shown at http://gvsu.edu/s/9c. The next activity is similar to the
latter problem.

Activity 3.4.4. Consider the region in the x-y plane that is bounded by the x-axis
and the function f(x) = 25 — x2. Construct a rectangle whose base lies on the x-axis
and is centered at the origin, and whose sides extend vertically until they intersect the
curve y = 25—x2. Which such rectangle has the maximum possible area? Which such
rectangle has the greatest perimeter? Which has the greatest combined perimeter and
area? (Challenge: answer the same questions in terms of positive parameters a and b
for the function f(x) = b — ax?.)

Activity 3.4.5. A trough is being constructed by bending a 4 X 24 (measured in feet)
rectangular piece of sheet metal.

Two symmetric folds 2 feet apart will be made parallel to the longest side of the rec-
tangle so that the trough has cross-sections in the shape of a trapezoid, as pictured
in Figure 3.4.4. At what angle should the folds be made to produce the trough of
maximum volume?

3.4.2 Summary

¢ While there is no single algorithm that works in every situation where optimization
is used, in most of the problems we consider, the following steps are helpful: draw a
picture and introduce variables; identify the quantity to be optimized and find rela-
tionships among the variables; determine a function of a single variable that models
the quantity to be optimized; decide the domain on which to consider the function
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Figure 3.4.4: A cross-section of the trough formed by folding to an angle of 6.

being optimized; use calculus to identify the absolute maximum and/or minimum of
the quantity being optimized.

3.4.3 Exercises
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Maximizing the volume of a box. An open box is to be made out of a 10-inch by 18-
inch piece of cardboard by cutting out squares of equal size from the four corners and
bending up the sides. Find the dimensions of the resulting box that has the largest
volume.

Minimizing the cost of a container. A rectangular storage container with an open top
is to have a volume of 26 cubic meters. The length of its base is twice the width. Material
for the base costs 11 dollars per square meter. Material for the sides costs 9 dollars per
square meter. Find the cost of materials for the cheapest such container.

Maximizing area contained by a fence. An ostrich farmer wants to enclose a rectangu-
lar area and then divide it into six pens with fencing parallel to one side of the rectangle
(see the figure below). There are 620 feet of fencing available to complete the job. What
is the largest possible total area of the six pens?

HEEEEN

Minimizing the area of a poster. The top and bottom margins of a poster are 8 cm and
the side margins are each 6 cm. If the area of printed material on the poster is fixed at
388 square centimeters, find the dimensions of the poster with the smallest area.

printed
material

Maximizing the area of a rectangle. A rectangle is inscribed with its base on the x-axis
and its upper corners on the parabola y = 1 — x2. What are the dimensions of such a
rectangle with the greatest possible area?

A rectangular box with a square bottom and closed top is to be made from two mate-
rials. The material for the side costs $1.50 per square foot and the material for the top
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and bottom costs $3.00 per square foot. If you are willing to spend $15 on the box, what
is the largest volume it can contain? Justify your answer completely using calculus.

A farmer wants to start raising cows, horses, goats, and sheep, and desires to have
a rectangular pasture for the animals to graze in. However, no two different kinds
of animals can graze together. In order to minimize the amount of fencing she will
need, she has decided to enclose a large rectangular area and then divide it into four
equally sized pens by adding three segments of fence inside the large rectangle that are
parallel to two existing sides. She has decided to purchase 7500 ft of fencing. What is
the maximum possible area that each of the four pens will enclose?

Two vertical poles of heights 60 ft and 80 ft stand on level ground, with their bases 100
ft apart. A cable that is stretched from the top of one pole to some point on the ground
between the poles, and then to the top of the other pole. What is the minimum possible
length of cable required? Justify your answer completely using calculus.

A company is designing propane tanks that are cylindrical with hemispherical ends.
Assume that the company wants tanks that will hold 1000 cubic feet of gas, and that the
ends are more expensive to make, costing $5 per square foot, while the cylindrical barrel
between the ends costs $2 per square foot. Use calculus to determine the minimum cost
to construct such a tank.
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3.5 Related Rates

Motivating Questions

e If two quantities that are related, such as the radius and volume of a spherical bal-
loon, are both changing as implicit functions of time, how are their rates of change
related? That is, how does the relationship between the values of the quantities affect
the relationship between their respective derivatives with respect to time?

In most of our applications of the derivative so far, we have been interested in the instanta-
neous rate at which one variable, say y, changes with respect to another, say x, leading us to

compute and interpret Z—Z. We next consider situations where several variable quantities are
related, but where each quantity is implicitly a function of time, which will be represented
by the variable t. Through knowing how the quantities are related, we will be interested in
determining how their respective rates of change with respect to time are related.

For example, suppose that air is being pumped into a spherical balloon so that its volume
increases at a constant rate of 20 cubic inches per second. Since the balloon’s volume and ra-
dius are related, by knowing how fast the volume is changing, we ought to be able to discover
how fast the radius is changing. We are interested in questions such as: can we determine
how fast the radius of the balloon is increasing at the moment the balloon’s diameter is 12
inches?

Preview Activity 3.5.1. A spherical balloon is being inflated at a constant rate of 20
cubic inches per second. How fast is the radius of the balloon changing at the instant
the balloon’s diameter is 12 inches? Is the radius changing more rapidly when d = 12
or when d = 16? Why?

a. Draw several spheres with different radii, and observe that as volume changes,
the radius, diameter, and surface area of the balloon also change.

b. Recall that the volume of a sphere of radius r is V = 37r3. Note well that in
the setting of this problem, both V and r are changing as time t changes, and
thus both V and r may be viewed as implicit functions of ¢, with respective
derivatives ‘fi—‘[/ and %. Differentiate both sides of the equation V = §m’3 with

respect to t (using the chain rule on the right) to find a formula for "{li—‘t/ that
depends on both r and .

c. At this point in the problem, by differentiating we have “related the rates” of
change of V and r. Recall that we are given in the problem that the balloon is
being inflated at a constant rate of 20 cubic inches per second. Is this rate the

dr o 4V ?
value of 4; or %-? Why?

d. From part (c), we know the value of % at every value of t. Next, observe that
when the diameter of the balloon is 12, we know the value of the radius. In the

equation ‘fi—‘t/ = 471;’2%, substitute these values for the relevant quantities and
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solve for the remaining unknown quantity, which is %. How fast is the radius
changing at the instant d = 12?

e. How is the situation different when d = 16? When is the radius changing more
rapidly, when d = 12 or when d = 16?

3.5.1 Related Rates Problems

In problems where two or more quantities can be related to one another, and all of the vari-
ables involved are implicitly functions of time, f, we are often interested in how their rates
are related; we call these related rates problems. Once we have an equation establishing the
relationship among the variables, we differentiate implicitly with respect to time to find
connections among the rates of change.

Example 3.5.1 Sand is being dumped by a conveyor belt onto a pile so that the sand forms a
right circular cone, as pictured in Figure 3.5.2.

Figure 3.5.2: A conical pile of sand.

Solution. As sand falls from the conveyor belt, several features of the sand pile will change:
the volume of the pile will grow, the height will increase, and the radius will get bigger, too.
All of these quantities are related to one another, and the rate at which each is changing is
related to the rate at which sand falls from the conveyor.

We begin by identifying which variables are changing and how they are related. In this
problem, we observe that the radius and height of the pile are related to its volume by the
standard equation for the volume of a cone,

Viewing each of V, r, and h as functions of ¢, we differentiate implicitly to arrive at an equa-
tion that relates their respective rates of change. Taking the derivative of each side of the
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equation with respect to ¢, we find

d [V] ;t [;7‘(7’2]’1}.

On the left, 4£[V] is simply 4. On the right, the situation is more complicated, as both r

and h are implicit functions of ¢t. Hence we need the product and chain rules. We find that

v = 4 [lnrzh]

dt  dt |3
—3nr dt[h]+3 hdt[r]

(Note particularly how we are using ideas from Section 2.7 on implicit differentiation. There
we found that when y is an implicit function of x, %[ yz] =2 y;—z. The same principles are
applied here when we compute % [r?] =2r %.

The equation

AV _1aih 20
dt dt 3 dt’
relates the rates of change of V, i, and r.

If we are given sufficient additional information, we may then find the value of one or more
of these rates of change at a specific point in time.

Example 3.5.3 In the setting of Example 3.5.1, suppose we also know the following: (a) sand
falls from the conveyor in such a way that the height of the pile is always half the radius, and
(b) sand falls from the conveyor belt at a constant rate of 10 cubic feet per minute. How fast
is the height of the sandpile changing at the moment the radius is 4 feet?

Solution. The information that the height is always half the radius tells us that for all values
oft, h = 3r. Differentiating with respect to ¢, it follows that 4 = 14X These relationships
enable us to relate 4 d . tojust one of r or h. Substituting the expressmns involving r and
for h and 4 d 7, we now have that

av._ 1 , ldr 2 1 dr

E—ETU” 'EE-FgTU’ 57’ ﬁ (351)
Since sand falls from the conveyor at the constant rate of 10 cubic feet per minute, the value
of 2 2V the rate at which the volume of the sand pile changes, is dt = 10 ft*/min. We are
interested in how fast the height of the pile is changing at the instant when r = 4, so we
substitute r = 4 and d—V = 10 into Equation (3.5.1), to find

S 30 dt|,,

16 dr
dt

1 1 dr 2 1 dr
10 = ~m4?*- m4-4-
0=3m4"3 at|_, T3 @

r=4

Only the value of %L: , remains unknown. We combine like terms on the right side of the
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equation above to get 10 = 87t % .4, and solve for % .4 to find
1
drp _ 10 ~ 0.39789
at|,_, 8mn

feet per second. Because we were interested in how fast the height of the pile was changing

at this instant, we want to know 4h \when r = 4. Since 4 = 14 for all values of t, it follows
dat dt — 2dr

dh
dt

— 2 0.19894 ft /min.
871

r=4

Note the difference between the notations 4+ and 2 .4~ The former represents the rate of
change of r with respect to t at an arbitrary value of ¢, while the latter is the rate of change

of r with respect to t at a particular moment, the moment when r = 4.

Had we known that i = 1r at the beginning of Example 3.5.1, we could have immediately
simplified our work by writing V solely in terms of r to have

1 1 1
V= 57‘(1"2 (Eh) = —7'(7"3.

From this last equation, differentiating with respect to t implies

v _1 4
dt 2 dt’
from which the same conclusions can be made.

Our work with the sandpile problem above is similar in many ways to our approach in Pre-
view Activity 3.5.1, and these steps are typical of most related rates problems. In certain
ways, they also resemble work we do in applied optimization problems, and here we sum-
marize the main approach for consideration in subsequent problems.

Note 3.5.4

¢ Identify the quantities in the problem that are changing and choose clearly defined
variable names for them. Draw one or more figures that clearly represent the situation.

¢ Determine all rates of change that are known or given and identify the rate(s) of change
to be found.

¢ Find an equation that relates the variables whose rates of change are known to those
variables whose rates of change are to be found.

¢ Differentiate implicitly with respect to t to relate the rates of change of the involved
quantities.

e Evaluate the derivatives and variables at the information relevant to the instant at
which a certain rate of change is sought. Use proper notation to identify when a de-

rivative is being evaluated at a particular instant, such as % et

When identifying variables and drawing a picture, it is important to think about the dynamic
ways in which the quantities change. Sometimes a sequence of pictures can be helpful; for
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some pictures that can be easily modified as applets built in Geogebra, see the following

links,! which represent

® how a circular oil slick’s area grows as its radius increases http:/ /gvsu.edu/s/9n;

¢ how the location of the base of a ladder and its height along a wall change as the ladder

slides http://gvsu.edu/s/90;

¢ how the water level changes in a conical tank as it fills with water at a constant rate

http://gvsu.edu/s/9p (compare the problem in Activity 3.5.2);

* how a skateboarder’s shadow changes as he moves past a lamppost http://gvsu.edu/

s/9q.

Drawing well-labeled diagrams and envisioning how different parts of the figure change is

a key part of understanding related rates problems and being successful at solving them.

Recognizing which geometric relationships are relevant in a given problem is often the key
to finding the function to optimize. For instance, although the problem in Activity 3.5.2 is
about a conical tank, the most important fact is that there are two similar right triangles
involved. In another setting, we might use the Pythagorean Theorem to relate the legs of
the triangle. But in the conical tank, the fact that the water fills the tank so that that the ratio
of radius to depth is constant turns out to be the important relationship. In other situations
where a changing angle is involved, trigonometric functions may provide the means to find

a.

Activity 3.5.2. A water tank has the shape of an inverted circular cone (point down)
with a base of radius 6 feet and a depth of 8 feet. Suppose that water is being pumped
into the tank at a constant instantaneous rate of 4 cubic feet per minute.

Draw a picture of the conical tank, including a sketch of the water level at a
point in time when the tank is not yet full. Introduce variables that measure the
radius of the water’s surface and the water’s depth in the tank, and label them
on your figure.

Say that r is the radius and / the depth of the water at a given time, . What
equation relates the radius and height of the water, and why?

Determine an equation that relates the volume of water in the tank at time ¢ to
the depth & of the water at that time.

Through differentiation, find an equation that relates the instantaneous rate of
change of water volume with respect to time to the instantaneous rate of change
of water depth at time ¢.

Find the instantaneous rate at which the water level is rising when the water in
the tank is 3 feet deep.

When is the water rising most rapidly: ath =3, h =4,orh =5?

relationships among various parts of the triangle.

'We again refer to the work of Prof. Marc Renault of Shippensburg University, found at http://gvsu.edu/s/5p.
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Activity 3.5.3. A television camera is positioned 4000 feet from the base of a rocket
launching pad. The angle of elevation of the camera has to change at the correct rate
in order to keep the rocket in sight. In addition, the auto-focus of the camera has
to take into account the increasing distance between the camera and the rocket. We
assume that the rocket rises vertically. (A similar problem is discussed and pictured
dynamically at http://gvsu.edu/s/9t. Exploring the applet at the link will be helpful
to you in answering the questions that follow.)

a. Draw a figure that summarizes the given situation. What parts of the picture
are changing? What parts are constant? Introduce appropriate variables to rep-
resent the quantities that are changing.

b. Find an equation that relates the camera’s angle of elevation to the height of the
rocket, and then find an equation that relates the instantaneous rate of change of
the camera’s elevation angle to the instantaneous rate of change of the rocket’s
height (where all rates of change are with respect to time).

c. Find an equation that relates the distance from the camera to the rocket to the
rocket’s height, as well as an equation that relates the instantaneous rate of
change of distance from the camera to the rocket to the instantaneous rate of
change of the rocket’s height (where all rates of change are with respect to time).

d. Suppose that the rocket’s speed is 600 ft/sec at the instant it has risen 3000 feet.
How fast is the distance from the television camera to the rocket changing at
that moment? If the camera is following the rocket, how fast is the camera’s
angle of elevation changing at that same moment?

e. If from an elevation of 3000 feet onward the rocket continues to rise at 600 feet/
sec, will the rate of change of distance with respect to time be greater when the
elevation is 4000 feet than it was at 3000 feet, or less? Why?

In addition to finding instantaneous rates of change at particular points in time, we can of-
ten make more general observations about how particular rates themselves will change over
time. For instance, when a conical tank is filling with water at a constant rate, it seems obvi-
ous that the depth of the water should increase more slowly over time. Note how carefully
we must phrase the relationship: we mean to say that while the depth, &, of the water is
increasing, its rate of change, 4, is decreasing (both as a function of ¢ and as a function of
h). We make this observation by solving the equation that relates the various rates for one
particular rate, without substituting any particular values for known variables or rates. For
instance, in the conical tank problem in Activity 3.5.2, we established that

v 1 ,dh
9 16 ar
and hence
dh _ 16 dv
dt — mh? dt’

Provided that ‘f;l—‘t/ is constant, it is immediately apparent that as i gets larger, % will get
smaller but remain positive. Hence, the depth of the water is increasing at a decreasing rate.
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Activity 3.5.4. As pictured in the applet at http://gvsu.edu/s/9q, a skateboarder
who is 6 feet tall rides under a 15 foot tall lamppost at a constant rate of 3 feet per sec-
ond. We are interested in understanding how fast his shadow is changing at various
points in time.

a. Draw an appropriate right triangle that represents a snapshot in time of the
skateboarder, lamppost, and his shadow. Let x denote the horizontal distance
from the base of the lamppost to the skateboarder and s represent the length of
his shadow. Label these quantities, as well as the skateboarder’s height and the
lamppost’s height on the diagram.

b. Observe that the skateboarder and the lamppost represent parallel line seg-
ments in the diagram, and thus similar triangles are present. Use similar tri-
angles to establish an equation that relates x and s.

c. Use your work in (b) to find an equation that relates ’fi—’t‘ and %.

d. Atwhat rate is the length of the skateboarder’s shadow increasing at the instant
the skateboarder is 8 feet from the lamppost?

e. As the skateboarder’s distance from the lamppost increases, is his shadow’s
length increasing at an increasing rate, increasing at a decreasing rate, or in-
creasing at a constant rate?

f. Which is moving more rapidly: the skateboarder or the tip of his shadow? Ex-
plain, and justify your answer.

In the first three activities of this section, we provided guided instruction to build a solution
in a step by step way. For the closing activity and the following exercises, most of the detailed
work is left to the reader.

Activity 3.5.5. A baseball diamond is 90" square. A batter hits a ball along the third
base line and runs to first base. At what rate is the distance between the ball and
first base changing when the ball is halfway to third base, if at that instant the ball is
traveling 100 feet/sec? At what rate is the distance between the ball and the runner
changing at the same instant, if at the same instant the runner is 1/8 of the way to first
base running at 30 feet/sec?

3.5.2 Summary
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rates of change can be related by implicitly differentiating the equation that relates the
quantities themselves. For instance, if the sides of a right triangle are all changing as
functions of time, say having lengths x, y, and z, then these quantities are related by
the Pythagorean Theorem: x% + y? = z2. It follows by implicitly differentiating with
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respect to ¢ that their rates are related by the equation

dx dy dz
ZXE + ZyE = ZZE,

so that if we know the values of x, y, and z at a particular time, as well as two of the
three rates, we can deduce the value of the third.

3.5.3 Exercises

1. Height of a conical pile of gravel. Gravel is being dumped from a conveyor belt at a
rate of 10 cubic feet per minute. It forms a pile in the shape of a right circular cone
whose base diameter and height are always the same. How fast is the height of the pile
increasing when the pile is 23 feet high? Recall that the volume of a right circular cone
with height 1 and radius of the base r is given by V = $tr2h.

2.  Movement of a shadow. A street light is at the top of a 13 foot tall pole. A 6 foot tall
woman walks away from the pole with a speed of 6 ft/sec along a straight path. How
fast is the tip of her shadow moving when she is 30 feet from the base of the pole?

3. A leaking conical tank. Water is leaking out of an inverted conical tank at a rate of
9600.0 cm®/min at the same time that water is being pumped into the tank at a constant
rate. The tank has height 7.0 m and the the diameter at the top is 5.0 m. If the water
level is rising at a rate of 22.0 cm/min when the height of the water is 1.5 m, find the
rate at which water is being pumped into the tank in cubic centimeters per minute.

Hint. Let R be the unknown rate at which water is being pumped in. Then you know
that if V is volume of water, ‘fj—‘t/ = R —9600.0. Use geometry (similar triangles) to find
the relationship between the height of the water and the volume of the water at any
given time. Recall that the volume of a cone with base radius r and height / is given
by 1mr?h

4.  Asailboat is sitting at rest near its dock. A rope attached to the bow of the boat is drawn
in over a pulley that stands on a post on the end of the dock that is 5 feet higher than
the bow. If the rope is being pulled in at a rate of 2 feet per second, how fast is the boat
approaching the dock when the length of rope from bow to pulley is 13 feet?

5. A swimming pool is 60 feet long and 25 feet wide. Its depth varies uniformly from 3
feet at the shallow end to 15 feet at the deep end, as shown in the Figure 3.5.5.

Suppose the pool has been emptied and is now being filled with water at a rate of 800
cubic feet per minute. At what rate is the depth of water (measured at the deepest
point of the pool) increasing when it is 5 feet deep at that end? Over time, describe
how the depth of the water will increase: at an increasing rate, at a decreasing rate, or
at a constant rate. Explain.
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Figure 3.5.5: The swimming pool.

A baseball diamond is a square with sides 90 feet long. Suppose a baseball player is
advancing from second to third base at the rate of 24 feet per second, and an umpire is
standing on home plate. Let 0 be the angle between the third baseline and the line of
sight from the umpire to the runner. How fast is 0 changing when the runner is 30 feet
from third base?

Sand is being dumped off a conveyor belt onto a pile in such a way that the pile forms
in the shape of a cone whose radius is always equal to its height. Assuming that the
sand is being dumped at a rate of 10 cubic feet per minute, how fast is the height of the
pile changing when there are 1000 cubic feet on the pile?



CHAPTER 4 .

The Definite Integral

4.1 Determining distance traveled from velocity

Motivating Questions

¢ If we know the velocity of a moving body at every point in a given interval, can we
determine the distance the object has traveled on the time interval?

e How is the problem of finding distance traveled related to finding the area under a
certain curve?

* What does it mean to antidifferentiate a function and why is this process relevant to
finding distance traveled?

¢ If velocity is negative, how does this impact the problem of finding distance traveled?

In the first section of the text, we considered a moving object with known position at time
t, namely, a tennis ball tossed into the air with height s (in feet) at time ¢ (in seconds) given
by s(t) = 64 — 16(t — 1)>. We investigated the average velocity of the ball on an interval

[a,b], computed by the difference quotient W We found that we could determine the
instantaneous velocity of the ball at time ¢ by taking the derivative of the position function,

s(t+h)—s(t)

‘() = lim ————=.
() it h
Thus, if its position function is differentiable, we can find the velocity of a moving object at
any point in time.

From this study of position and velocity we have learned a great deal. We can use the de-
rivative to find a function’s instantaneous rate of change at any point in the domain, to find
where the function is increasing or decreasing, where it is concave up or concave down,
and to locate relative extremes. The vast majority of the problems and applications we have
considered have involved the situation where a particular function is known and we seek
information that relies on knowing the function’s instantaneous rate of change. For all these
tasks, we proceed from a function f to its derivative, f’, and use the meaning of the deriv-
ative to help us answer important questions.
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We have also encountered the reverse situation, where we know the derivative of a function,
f’, and try to deduce information about f. We will focus our attention in Chapter 4 on this
problem: if we know the instantaneous rate of change of a function, can we find the function
itself? We start with a more specific question: if we know the instantaneous velocity of an
object moving along a straight line path, can we find its corresponding position function?

Preview Activity 4.1.1. Suppose that a person is taking a walk along a long straight
path and walks at a constant rate of 3 miles per hour.

a. On the left-hand axes provided in Figure 4.1.1, sketch a labeled graph of the
velocity function v(t) = 3.

| mph 1 miles

hrs hrs

Figure 4.1.1: At left, axes for plotting y = v(t); at right, for plotting y = s(¢).

Note that while the scale on the two sets of axes is the same, the units on the
right-hand axes differ from those on the left. The right-hand axes will be used
in question (d).

b. How far did the person travel during the two hours? How is this distance related
to the area of a certain region under the graph of y = v(t)?

c. Find an algebraic formula, s(¢), for the position of the person at time , assuming
that s(0) = 0. Explain your thinking.

d. On the right-hand axes provided in Figure 4.1.1, sketch a labeled graph of the
position function y = s(t).

e. For what values of ¢t is the position function s increasing? Explain why this is
the case using relevant information about the velocity function v.
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4.1.1 Area under the graph of the velocity function

In Preview Activity 4.1.1, we learned that when the velocity of a moving object’s velocity is
constant (and positive), the area under the velocity curve over an interval of time tells us the
distance the object traveled.

h h
3.. mp 3.. mp
y=v()
=2 ” N_
A
1 Al 1 :
hrs hrs

1 2 3 1 2 3

Figure 4.1.2: At left, a constant velocity function; at right, a non-constant velocity function.

The left-hand graph of Figure 4.1.2 shows the velocity of an object moving at 2 miles per
hour over the time interval [1,1.5]. The area A; of the shaded region under y = v(f) on
[1,1.5]is

miles 1

Al = hour 2 hours = 1 mile.

This result is simply the fact that distance equals rate times time, provided the rate is con-
stant. Thus, if v(t) is constant on the interval [4, b], the distance traveled on [a, b] is equal to
the area A given by

A =v(a)b-a)=ov(a)At,

where At is the change in f over the interval. (Since the velocity is constant, we can use
any value of v(t) on the interval [a, b], we simply chose v(a), the value at the interval’s left
endpoint.) For several examples where the velocity function is piecewise constant, see http:/
/gvsu.edu/s/9T.!

The situation is more complicated when the velocity function is not constant. But on rela-
tively small intervals where v(f) does not vary much, we can use the area principle to esti-
mate the distance traveled. The graph at right in Figure 4.1.2 shows a non-constant velocity
function. On the interval [1, 1.5], the velocity varies from v(1) = 2.5 down to v(1.5) ~ 2.1.
One estimate for the distance traveled is the area of the pictured rectangle,

miles
hour

Ay =v(1)At =25 . %hours = 1.25 miles.

Note that because v is decreasing on [1,1.5], A, = 1.25 is an over-estimate of the actual
distance traveled.

Marc Renault, calculus applets.
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To estimate the area under this non-constant velocity function on a wider interval, say [0, 3],
one rectangle will not give a good approximation. Instead, we could use the six rectangles
pictured in Figure 4.1.3, find the area of each rectangle, and add up the total. Obviously
there are choices to make and issues to understand: How many rectangles should we use?
Where should we evaluate the function to decide the rectangle’s height? What happens
if the velocity is sometimes negative? Can we find the exact area under any non-constant
curve?

hrs

Figure 4.1.3: Using six rectangles to estimate the area under y = v(¢) on [0, 3].

We will study these questions and more in what follows; for now it suffices to observe that
the simple idea of the area of a rectangle gives us a powerful tool for estimating distance
traveled from a velocity function, as well as for estimating the area under an arbitrary curve.
To explore the use of multiple rectangles to approximate area under a non-constant velocity
function, see the applet found at http://gvsu.edu/s/9U.2

Activity 4.1.2. Suppose that a person is walking in such a way that her velocity varies
slightly according to the information given in Table 4.1.4 and graph given in Fig-
ure 4.1.5.

a. Using the grid, graph, and given data appropriately, estimate the distance trav-
eled by the walker during the two hour interval from t = 0 to ¢t = 2. You should
use time intervals of width At = 0.5, choosing a way to use the function consis-
tently to determine the height of each rectangle in order to approximate distance
traveled.

b. How could you get a better approximation of the distance traveled on [0, 2]?
Explain, and then find this new estimate.

2Marc Renault, calculus applets.
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t v(t)

- 7 mph
0.00 1.500 3t
025 1.789 y=v()
050 1.938
075 1.992 21
1.00  2.000
125 2.008 /
150 2.063
1.75 2211
hrs
200 2.500 |
1 2

Table 4.1.4: Velocity data for the per-

son walking.
Figure 4.1.5: The graph of y = v(f).

c. Now suppose that you know that v is given by v(t) = 0.5t> — 1.5¢> + 1.5¢ + 1.5.
Remember that v is the derivative of the walker’s position function, s. Find a
formula for s so that s’ = v.

d. Based on your work in (c), what is the value of s(2) — s(0)? What is the meaning
of this quantity?

4.1.2 Two approaches: area and antidifferentiation

When the velocity of a moving object is positive, the object’s position is always increasing.
(We will soon consider situations where velocity is negative; for now, we focus on the situa-
tion where velocity is always positive.) We have established that whenever v is constant on
an interval, the exact distance traveled is the area under the velocity curve. When v is not
constant, we can estimate the total distance traveled by finding the areas of rectangles that
approximate the area under the velocity curve.

Thus, we see that finding the area between a curve and the horizontal axis is an important
exercise: besides being an interesting geometric question, if the curve gives the velocity of
a moving object, the area under the curve tells us the exact distance traveled on an interval.
We can estimate this area if we have a graph or a table of values for the velocity function.

In Activity 4.1.2, we encountered an alternate approach to finding the distance traveled. If
y = v(t) is a formula for the instantaneous velocity of a moving object, then v must be the
derivative of the object’s position function, s. If we can find a formula for s(t) from the
formula for v(t), we will know the position of the object at time ¢, and the change in position
over a particular time interval tells us the distance traveled on that interval.

For a simple example, consider the situation from Preview Activity 4.1.1, where a person is
walking along a straight line with velocity function v(t) = 3 mph. On the left-hand graph
of the velocity function in Figure 4.1.6, we see the relationship between area and distance
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| mph 1 miles

s(t) =3t

s(1.5) =45
A=3-125=375
| hrs 5(0.25) =075 | hrs

1 2 1 2

Figure 4.1.6: The velocity function v(t) = 3 and corresponding position function s(t) = 3t.

traveled,
A=3 miles

= -1.25hours = 3.75 miles.
hour

In addition, we observe?® that if s(t) = 3¢, then s’(¢) = 3, so s(t) = 3t is the position function
whose derivative is the given velocity function, v(t) = 3. The respective locations of the
person at times t = 0.25 and t = 1.5 are s(1.5) = 4.5 and 5(0.25) = 0.75, and therefore

s(1.5) — (0.25) = 4.5 — 0.75 = 3.75 miles.

This is the person’s change in position on [0.25, 1.5], which is precisely the distance traveled.
In this example there are profound ideas and connections that we will study throughout
Chapter 4.

For now, observe that if we know a formula for a velocity function v, it can be very helpful to
find a function s that satisfies s* = v. We say that s is an antiderivative of v. More generally,
we have the following formal definition.

Definition 4.1.7 If g and G are functions such that G’ = g, we say that G is an antiderivative
of g.

For example, if g(x) = 3x2 + 2x, G(x) = x> + x? is an antiderivative of g, because G’(x) =
g(x). Note that we say “an” antiderivative of g rather than “the” antiderivative of g, because
H(x) = x*>+x%+5is also a function whose derivative is g, and thus H is another antiderivative
of g.

Activity 4.1.3. A ball is tossed vertically in such a way that its velocity function is
given by v(t) = 32 — 32t, where t is measured in seconds and v in feet per second.

3Here we are making the implicit assumption that s(0) = 0; we will discuss different possibilities for values of
5(0) in subsequent study.
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4.1 Determining distance traveled from velocity

Assume that this function is valid for 0 < t < 2.

a. For what values of t is the velocity of the ball positive? What does this tell you
about the motion of the ball on this interval of time values?

b. Find an antiderivative, s, of v that satisfies s(0) = 0.
c. Compute the value of s(1) — s(%). What is the meaning of the value you find?

d. Using the graph of y = v(t) provided in Figure 4.1.8, find the exact area of the
region under the velocity curve between t = 1 and t = 1. What is the meaning
of the value you find?

ft/sec

241

v(t) =32-32t
121

secC

—
N+

-124

244

Figure 4.1.8: The graph of y = v(t).

e. Answer the same questions as in (c) and (d) but instead using the interval [0, 1].

f. What is the value of s(2) — s(0)? What does this result tell you about the flight
of the ball? How is this value connected to the provided graph of y = v(t)?
Explain.

4.1.3 When velocity is negative

The assumption that its velocity is positive on a given interval guarantees that the movement
of an object is always in a single direction, and hence ensures that its change in position is
the same as the distance it travels. As we saw in Activity 4.1.3, there are natural settings in
which an object’s velocity is negative, and we would like to understand this scenario as well.

Consider a simple example where a woman goes for a walk on the beach along a stretch of
very straight shoreline that runs east-west. We assume that her initial position is s(0) = 0,
and that her position function increases as she moves east from her starting location. For
instance, s = 1 mile represents one mile east of the start location, while s = -1 tells us she is
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one mile west of where she began walking on the beach.

Now suppose she walks in the following manner. From the outset at t = 0, she walks due
east at a constant rate of 3 mph for 1.5 hours. After 1.5 hours, she stops abruptly and begins
walking due west at a constant rate of 4 mph and does so for 0.5 hours. Then, after another
abrupt stop and start, she resumes walking at a constant rate of 3 mph to the east for one
more hour. What is the total distance she traveled on the time interval from t = 0 to t = 3?
What the total change in her position over that time?

These questions are possible to answer without calculus because the velocity is constant on
each interval. From t = 0 to t = 1.5, she traveled

Dj,15) = 3 miles per hour - 1.5 hours = 4.5 miles.

Ont =1.5tot =2, the distance traveled is

D152 = 4 miles per hour - 0.5 hours = 2 miles.

Finally, in the last hour she walked
D231 = 3 miles per hour - 1 hours = 3 miles,
so the total distance she traveled is

D = D[O,l.S] + D[1.5,2] + D[2,3] =45+2+ 3 =9.5miles.

Since the velocity for 1.5 < t < 2 is v = —4, indicating motion in the westward direction, the
woman first walked 4.5 miles east, then 2 miles west, followed by 3 more miles east. Thus,
the total change in her position is

change in position = 4.5 — 2 + 3 = 5.5 miles.

We have been able to answer these questions fairly easily, and if we think about the problem
graphically, we can generalize our solution to the more complicated setting when velocity is
not constant, and possibly negative. In Figure 4.1.9, we see how the distances we computed
can be viewed as areas: A; = 4.5 comes from multiplyimg rate times time (3 - 1.5), as do A»
and Az. But while A, is an area (and is therefore positive), because the velocity function is
negative for 1.5 < t < 2, this area has a negative sign associated with it. The negative area
distinguishes between distance traveled and change in position.

The distance traveled is the sum of the areas,

D=A1+A,+A3=45+2+3=9.5miles.
But the change in position has to account for travel in the negative direction. An area above
the t-axis is considered positive because it represents distance traveled in the positive direc-

tion, while one below the t-axis is viewed as negative because it represents travel in theneg-
ative direction. Thus, the change in the woman’s position is

s(3) — s(0) = (+4.5) + (=2) + (+3) = 5.5 miles.
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(3,5.5)
mph miles (1.5,4.5)
451 4571

16 y=v(r) s04” s(t)
1. b S = ]. T
5 A1 =45 A3 =3 hrs 5 hre
1 3 1 3
-1.5% -1.5%
A, =|2
-3.01 -3.01
451 451

Figure 4.1.9: At left, the velocity function of the person walking; at right, the
corresponding position function.

In other words, the woman walks 4.5 miles in the positive direction, followed by two miles
in the negative direction, and then 3 more miles in the positive direction.

Negative velocity is also seen in the graph of the position function y = s(f). Its slope is
negative (specifically, —4) on the interval 1.5 < t < 2 because the velocity is —4 on that
interval. The negative slope shows the position function is decreasing because the woman
is walking east, rather than west.

To summarize, we see that if velocity is sometimes negative, a moving object’s change in po-
sition different from its distance traveled. If we compute separately the distance traveled on
each interval where velocity is positive or negative, we can calculate either the total distance
traveled or the total change in position. We assign a negative value to distances traveled in
the negative direction when we calculate change in position, but a positive value when we
calculate the total distance traveled.

Activity 4.1.4. Suppose that an object moving along a straight line path has its velocity
v (in meters per second) at time ¢ (in seconds) given by the piecewise linear function
whose graph is pictured at left in Figure 4.1.10. We view movement to the right as
being in the positive direction (with positive velocity), while movement to the left is
in the negative direction.

Suppose further that the object’s initial position at time ¢ = 0is s(0) = 1.
a. Determine the total distance traveled and the total change in position on the
time interval 0 < ¢ < 2. What is the object’s position at t = 2?

b. Onwhat time intervals is the moving object’s position function increasing? Why?
On what intervals is the object’s position decreasing? Why?
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2l m/sec sl
21 41
2 4 6 8
2+ 4+
-41 -8

Figure 4.1.10: The velocity function of a moving object.

c. What is the object’s position at ¢+ = 82 How many total meters has it traveled to
get to this point (including distance in both directions)? Is this different from
the object’s total change in positionon t =0to f = 8?

d. Find the exact position of the objectatt =1,2,3, ..., 8 and use this data to sketch
an accurate graph of y = s(f) on the axes provided at right in Figure 4.1.10. How
can you use the provided information about y = v(t) to determine the concavity
of s on each relevant interval?

4.1.4 Summary

210

If we know the velocity of a moving body at every point in a given interval and the
velocity is positive throughout, we can estimate the object’s distance traveled and in
some circumstances determine this value exactly.

In particular, when velocity is positive on an interval, we can find the total distance
traveled by finding the area under the velocity curve and above the t-axis on the given
time interval. We may only be able to estimate this area, depending on the shape of
the velocity curve.

An antiderivative of a function f is a new function F whose derivative is f. That is, F
is an antiderivative of f provided that F’ = f. In the context of velocity and position,
if we know a velocity function v, an antiderivative of v is a position function s that
satisfies s’ = v. If v is positive on a given interval, say [4, b], then the change in position,
s(b) — s(a), measures the distance the moving object traveled on [a, b].

If its velocity is sometimes negative, a moving object is sometimes traveling in the
opposite direction or backtracking. To determine distance traveled, we have to think



4.1 Determining distance traveled from velocity
compute the distance separately on intervals where velocity is positive or negative,
and account for the change in position on each such interval.

4.1.5 Exercises

1. Estimating distance traveled from velocity data. A car comes to a stop six seconds
after the driver applies the brakes. While the brakes are on, the following velocities are "
recorded:

Time since brakes applied (sec) | 0 (2 |4 |6
Velocity (ft/s) 90 |46 [ 17 | 0

Give lower and upper estimates (using all of the available data) for the distance the car
traveled after the brakes were applied.

On a sketch of velocity against time, show the lower and upper estimates you found above..

2.  Distance from a linear veloity function. The velocity of a car is f(t) = 11t meters/ R
second. Use a graph of f(t) to find the exact distance traveled by the car, in meters, "~
from t = 0 to t = 10 seconds.

3. Change in position from a linear velocity function. The velocity of a particle moving &

along the x-axis is given by f(t) = 12 — 4t cm/sec. Use a graph of f(t) to find the exact —
change in position of the particle from time ¢ = 0 to t = 4 seconds.

4. Comparing distance traveled from velocity graphs. Two cars start at the same time B8
and travel in the same direction along a straight road. The figure below gives the ve- "=~

locity, v (in km/hr), of each car as a function of time (in hr).

o

S —
- -

L

The velocity of car A is given by the solid, blue curve, and the velocity of car B by
dashed, red curve.

(a) Which car attains the larger maximum velocity?
(b) Which stops first?
(c) Which travels farther?

5. Findingaverage acceleration from velocity data. Suppose that an accelerating car goes R4
from 0 mph to 68.2 mph in five seconds. Its velocity is given in the following table, ***
converted from miles per hour to feet per second, so that all time measurements are in
seconds. (Note: 1 mph is 22/15 feet per sec =22/15 ft/s.) Find the average acceleration
of the car over each of the first two seconds.
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t 0 1 2 3 4 5
v(t) | 0.00 | 34.09 | 59.09 | 77.27 | 90.91 | 100.00

§ 6. Change in position from a quadratic velocity function. The velocity function is v(t) =
estert t2-3t+2 for a particle moving along a line. Find the displacement (net distance covered)
of the particle during the time interval [-2, 5].

7.  Along the eastern shore of Lake Michigan from Lake Macatawa (near Holland) to Grand
Haven, there is a bike path that runs almost directly north-south. For the purposes
of this problem, assume the road is completely straight, and that the function s(t)
tracks the position of the biker along this path in miles north of Pigeon Lake, which
lies roughly halfway between the ends of the bike path.

Suppose that the biker’s velocity function is given by the graph in Figure 4.1.11 on the
time interval 0 < t < 4 (where t is measured in hours), and that s(0) = 1.

mph miles
101 y=v(t) 104
6 6
2 hrs 21 | | | | hrs
ol 2 4 5 ol 1 2 3 4 5
-6 -61
-104 -10¢

Figure 4.1.11: The graph of the biker’s velocity, y = v(f), at left. At right, axes to plot
an approximate sketch of y = s(t).

a. Approximately how far north of Pigeon Lake was the cyclist when she was the
greatest distance away from Pigeon Lake? At what time did this occur?

b. What is the cyclist’s total change in position on the time interval 0 < ¢ < 2? At
t =2, was she north or south of Pigeon Lake?

c. What is the total distance the biker traveled on 0 < t < 4? At the end of the ride,
how close was she to the point at which she started?

d. Sketch an approximate graph of y = s(t), the position function of the cyclist, on
the interval 0 < t < 4. Label at least four important points on the graph of s.

8.  Atoyrocketislaunched vertically from the ground on a day with no wind. The rocket’s
vertical velocity at time ¢ (in seconds) is given by v(t) = 500 — 32t feet/sec.

a. At what time after the rocket is launched does the rocket’s velocity equal zero?
Call this time value a. What happens to the rocket at t = a?

b. Find the value of the total area enclosed by y = v(t) and the t-axis on the interval
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0 <t < a. What does this area represent in terms of the physical setting of the
problem?

Find an antiderivative s of the function v. That is, find a function s such that

s’(t) = v(t).

Compute the value of s(a) — s(0). What does this number represent in terms of
the physical setting of the problem?

Compute s(5) — s(1). What does this number tell you about the rocket’s flight?

9. An object moving along a horizontal axis has its instantaneous velocity at time ¢ in
seconds given by the function v pictured in Figure 4.1.12, where v is measured in feet/

secC.

Assume that the curves that make up the parts of the graph of y = v(t) are either

portions of straight lines or portions of circles.

d.

Figure 4.1.12: The graph of y = v(f), the velocity function of a moving object.

Determine the exact total distance the object traveled on 0 < t < 2.

What is the value and meaning of s(5) — s(2), where y = s(t) is the position func-
tion of the moving object?

On which time interval did the object travel the greatest distance: [0, 2], [2, 4], or
(5,717

On which time interval(s) is the position function s increasing? At which point(s)
does s achieve a relative maximum?

10. Filters at a water treatment plant become dirtier over time and thus become less ef-
fective; they are replaced every 30 days. During one 30-day period, the rate at which
pollution passes through the filters into a nearby lake (in units of particulate matter
per day) is measured every 6 days and is given in the following table. The time ¢ is
measured in days since the filters were replaced.

a

Day, t 0 6 12 18 24 30
Rate of pollution in units per day, p(t) 7 8 10 13 18 35

Table 4.1.13: Pollution data for the water filters.

. Plot the given data on a set of axes with time on the horizontal axis and the rate
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of pollution on the vertical axis.

b. Explain why the amount of pollution that entered the lake during this 30-day
period would be given exactly by the area bounded by y = p(¢) and the t-axis on
the time interval [0, 30].

c. Estimate the total amount of pollution entering the lake during this 30-day period.
Carefully explain how you determined your estimate.
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4.2 Riemann Sums

4.2 Riemann Sums

Motivating Questions

* How can we use a Riemann sum to estimate the area between a given curve and the
horizontal axis over a particular interval?

* What are the differences among left, right, middle, and random Riemann sums?

e How can we write Riemann sums in an abbreviated form?

In Section 4.1, we learned that if an object moves with positive velocity v, the area between
y = v(t) and the t-axis over a given time interval tells us the distance traveled by the object
over that time period. If v(t) is sometimes negative and we view the area of any region below
the t-axis as having an associated negative sign, then the sum of these signed areas tells us
the moving object’s change in position over a given time interval.

For instance, for the velocity function given
in Figure 4.2.1, if the areas of shaded re-
gions are A1, Ay, and A3 as labeled, then y= v(t)
the total distance D traveled by the moving
object on [a, b] is

D=A1+A) + A3,

while the total change in the object’s posi-
tion on [a, b] is

s(b) —s(a) = Ay — Ay + As, / j

Because the motion is in the negative di-
rection on the interval where v(t) < 0, we
subtract A, to determine the object’s total
change in position.

Figure 4.2.1: A velocity function that is
sometimes negative.

Of course, finding D and s(b) — s(a) for the graph in Figure 4.2.1 presumes that we can
actually find the areas A1, Ay, and As. So far, we have worked with velocity functions that
were either constant or linear, so that the area bounded by the velocity function and the
horizontal axis is a combination of rectangles and triangles, and we can find the area exactly.
But when the curve bounds a region that is not a familiar geometric shape, we cannot find
its area exactly. Indeed, this is one of our biggest goals in Chapter 4: to learn how to find the
exact area bounded between a curve and the horizontal axis for as many different types of
functions as possible.

In Activity 4.1.2, we approximated the area under a nonlinear velocity function using rectan-
gles. In the following preview activity, we consider three different options for the heights
of the rectangles we will use.
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216

Preview Activity 4.2.1. A person walking along a straight path has her velocity in
miles per hour at time t given by the function v(t) = 0.25t> — 1.5t + 3t + 0.25, for
times in the interval 0 < t < 2. The graph of this function is also given in each of the
three diagrams in Figure 4.2.2.

3 mph N mph 3 mph

y=v(r) y=v(r) y=v()
2 21 2
1 A4 1. B4 1.. C4

A3 B; (6]

Aj B, G
hrs AB1 hrs 1C1 hrs

/ A, 1 2 / 1 2 / 1 2

Figure 4.2.2: Three approaches to estimating the area under y = v(t) on the interval
[0,2].

Note that in each diagram, we use four rectangles to estimate the area under y = v(t)
on the interval [0, 2], but the method by which the four rectangles’ respective heights
are decided varies among the three individual graphs.

a. How are the heights of rectangles in the left-most diagram being chosen? Ex-

plain, and hence determine the value of

S=A +A2+A3 + Ay
by evaluating the function y = v(t) at appropriately chosen values and observ-
ing the width of each rectangle. Note, for example, that

1 1
A3=U(1)'§=2'§=1.

. Explain how the heights of rectangles are being chosen in the middle diagram

and find the value of
T=Bl +B2+B3+B4.

. Likewise, determine the pattern of how heights of rectangles are chosen in the

right-most diagram and determine

U=C1+C2+C3+C4.

. Of the estimates S, T, and U, which do you think is the best approximation of

D, the total distance the person traveled on [0, 2]? Why?



4.2 Riemann Sums

4.2.1 Sigma Notation

We have used sums of areas of rectangles to approximate the area under a curve. Intuitively,
we expect that using a larger number of thinner rectangles will provide a better estimate for
the area. Consequently, we anticipate dealing with sums of a large number of terms. To do
so, we introduce sigma notation, named for the Greek letter X, which is the capital letter S in
the Greek alphabet.

For example, say we are interested in the sum
1+2+3+---+100,

the sum of the first 100 natural numbers. In sigma notation we write

100
Zk:1+2+3+~-+100.
k=1

We read the symbol 211{0201 k as “the sum from k equals 1 to 100 of k.” The variable k is called
the index of summation, and any letter can be used for this variable. The pattern in the terms
of the sum is denoted by a function of the index; for example,

10
Z(k2+2k):(12+2-1)+(22+2-2)+(32+2-3)+-~-+(102+2-10),
k=1

and more generally,

DUE) = FO)+ f@) 4o+ f(n).
k=1

Sigma notation allows us to vary easily the function being used to describe the terms in the
sum, and to adjust the number of terms in the sum simply by changing the value of n. We
test our understanding of this new notation in the following activity.

Activity 4.2.2. For each sum written in sigma notation, write the sum long-hand and
evaluate the sum to find its value. For each sum written in expanded form, write the
sum in sigma notation.

a. B (K +2) d 4+8+16432+ - +256
b. 39,2 -1)
c.3+74+11+15+---+27 e. Z?:l%

4.2.2 Riemann Sums
When a moving body has a positive velocity function y = v(¢) on a given interval [a, b],
the area under the curve over the interval gives the total distance the body travels on [a, b].

We are also interested in finding the exact area bounded by y = f(x) on an interval [a, b],
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Xp X1 X2 xF‘ xi:rl Xp—1  An

Ax

Figure 4.2.3: Subdividing the interval [a, D] into n subintervals of equal length Ax.

regardless of the meaning or context of the function f. For now, we continue to focus on
finding an accurate estimate of this area by using a sum of the areas of rectangles. Unless
otherwise indicated, we assume that f is continuous and non-negative on [a, b].

The first choice we make in such an approximation is the number of rectangles. If we desire
n rectangles of equal width to subdivide the interval [a, b], then each rectangle must have
width Ax = b%” We let xg = a, x, = b, and define x; = a + iAx, so that x; = xg + Ax,
X2 = xo + 2Ax, and so on, as pictured in Figure 4.2.3.

We use each subinterval [x;, x;,1] as the base of a rectangle, and next choose the height of the
rectangle on that subinterval. There are three standard choices: we can use the left endpoint
of each subinterval, the right endpoint of each subinterval, or the midpoint of each. These
are precisely the options encountered in Preview Activity 4.2.1 and seen in Figure 4.2.2. We
next explore how these choices can be described in sigma notation.

Consider an arbitrary positive function f on [a, b] with the interval subdivided as shown in
Figure 4.2.3, and choose to use left endpoints. Then on each interval [x;, x;1+1], the area of
the rectangle formed is given by

Ai+1 = f(xl) : Ax/

as seen in Figure 4.2.4.

\ y=f(x)

A | A2 o A

X0 X1 X2 Xi  Xi+1 Xn—1 Xn

Figure 4.2.4: Subdividing the interval [a, b] into n subintervals of equal length Ax and
approximating the area under y = f(x) over [a, b] using left rectangles.
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If we let L,, denote the sum of the areas of these rectangles, we see that

Ly=A1+A+--+Aina+-+A,
= f(xo) - Ax+ f(x1)-Ax+---+ f(xi) - Ax 4+ -+ + f(xp-1) - Ax.

In the more compact sigma notation, we have
n=1

Ly = Z F(xi)Ax.
i=0

Note that since the index of summation begins at 0 and ends at # — 1, there are indeed n
terms in this sum. We call L, the left Riemann sum for the function f on the interval [a, b].

To see how the Riemann sums for right endpoints and midpoints are constructed, we con-
sider Figure 4.2.5. For the sum with right endpoints, we see that the area of the rectangle
on an arbitrary interval [x;, x;+1] is given by Bi+1 = f(xi4+1) - Ax, and that the sum of all such
areas of rectangles is given by

Ry=B1+By+:++Bjs1+---+By
= f(x1) - Ax+ f(x2) - Ax+ -+ f(xiz1) - Ax + -+ f(xy) - Ax

= 3
i=1

We call Ry, the right Riemann sum for the function f on the interval [a, b].

For the sum that uses midpoints, we introduce the notation

— Xt Xy
Xit1 = —

so that X1 is the midpoint of the interval [x;, x;,1]. For instance, for the rectangle with area

C1 in Figure 4.2.5, we now have
C1 = f(x1) - Ax.

e ANEE

By |B | -+ [Bixi| -+ |Ba G |G| - G| o |G \

X0 X1 X Xi  Xit1  Xp—1 Yn X0 X1 X Xi  Xit1  Xp—1 Yn

Figure 4.2.5: Riemann sums using right endpoints and midpoints.
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Sample Point Placement 2
I Relative Jeft endpoint 4 f(x)=sin(2x)- %+3

V¥ Show o———
I~ Random*
I~ Upper Sum
I~ Lower Sum 3
Number of Subintervals /
2

n=10
-

Approximations

Relative: 7.73716
Random: 6.51399 0 . . -
Upper: 8.58074 0 1 2 3 4 6
Lower: 4.12815

Integral: 6.32356

* Make sure the applet has
focus, then use Ctrl-R or F9
to recompute random values -2

Figure 4.2.6: A snapshot of the applet found at http://gvsu.edu/s/a9.

Hence, the sum of all the areas of rectangles that use midpoints is

M,=C1+Co+--+Cip1+---+Cy
=f(x1) - Ax+ f(x2) - Ax+ -+ f(Xiz1) - Ax + -+ f(Xy) - Ax

= Zn: f(xi)Ax,
i=1

and we say that M, is the middle Riemann sum for f on [a, b].

Thus, we have two variables to explore: the number of rectangles and the height of each
rectangle. We can explore these choices dynamically, and the applet! found at http://
gvsu.edu/s/a9 is a particularly useful one. There we see the image shown in Figure 4.2.6,
but with the opportunity to adjust the slider bars for the heights and the number of rec-
tangles. By moving the sliders, we can see how the heights of the rectangles change as we
consider left endpoints, midpoints, and right endpoints, as well as the impact that a larger
number of narrower rectangles has on the approximation of the exact area bounded by the
function and the horizontal axis.

When f(x) > 0 on [a, b], each of the Riemann sums L,, R,, and M,, provides an estimate of
the area under the curve y = f(x) over the interval [a, b]. We also recall that in the context
of a nonnegative velocity function y = v(t), the corresponding Riemann sums approximate
the distance traveled on [a, b] by a moving object with velocity function v.

There is a more general way to think of Riemann sums, and that is to allow any choice of
where the function is evaluated to determine the rectangle heights. Rather than saying we’ll
always choose left endpoints, or always choose midpoints, we simply say that a point x7,,
will be selected at random in the interval [x;, x;+1] (so that x; < x7,; < xi+1)- The Riemann
sum is then given by

f(x{)-Ax+f(x§)-Ax+~~-+f(x;.‘+1)-Ax+---+f(x;)~Ax = Zn:f(x;)Ax.
i=1

Marc Renault, Geogebra Calculus Applets.
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4.2 Riemann Sums

Athttp://gvsu.edu/s/a9, the applet noted earlier and referenced in Figure 4.2.6, by uncheck-
ing the “relative” box at the top left, and instead checking “random,” we can easily explore
the effect of using random point locations in subintervals on a Riemann sum. In computa-
tional practice, we most often use L,,, R;;, or M;;, while the random Riemann sum is useful in
theoretical discussions. In the following activity, we investigate several different Riemann
sums for a particular velocity function.

Activity 4.2.3. Suppose that an object moving along a straight line path has its velocity
in feet per second at time ¢ in seconds given by v(t) = %(t -3)2+2.

a. Carefully sketch the region whose exact area will tell you the value of the dis-
tance the object traveled on the time interval 2 < ¢t < 5.

b. Estimate the distance traveled on [2, 5] by computing L4, R4, and Mj.

c. Does averaging L4 and R4 result in the same value as M4? If not, what do you
think the average of L4 and R4 measures?

d. For this question, think about an arbitrary function f, rather than the particular
function v given above. If f is positive and increasing on [a, b], will L, over-
estimate or under-estimate the exact area under f on [4,b]? Will R,, over- or
under-estimate the exact area under f on [4, b]? Explain.

4.2.3 When the function is sometimes negative
For a Riemann sum such as

n-1
L, = Z; Flxi)Ax,

we can of course compute the sum even when f takes on negative values. We know that
when f is positive on [4, b], a Riemann sum estimates the area bounded between f and the
horizontal axis over the interval.

y=rf(x) y=rf(x) y=rf(x)

Figure 4.2.7: At left and center, two left Riemann sums for a function f that is sometimes
negative; at right, the areas bounded by f on the interval [a, d].
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For the function pictured in the first graph of Figure 4.2.7, a left Riemann sum with 12 subin-
tervals over [a, d] is shown. The function is negative on the interval b < x < ¢, so at the
four left endpoints that fall in [b, c], the terms f(x;)Ax are negative. This means that those
four terms in the Riemann sum produce an estimate of the opposite of the area bounded by

y = f(x) and the x-axis on [b, c].

In the middle graph of Figure 4.2.7, we see that by increasing the number of rectangles the
approximation of the area (or the opposite of the area) bounded by the curve appears to
improve.

In general, any Riemann sum of a continuous function f on an interval [a, b] approximates
the difference between the area that lies above the horizontal axis on [a,b] and under f
and the area that lies below the horizontal axis on [4,b] and above f. In the notation of
Figure 4.2.7, we may say that

Ly =~ A1 — Ay + A3,

where Ly, is the left Riemann sum using 24 subintervals shown in the middle graph. A; and
Aj are the areas of the regions where f is positive, and A, is the area where f is negative.
We will call the quantity A1 — Ay + A3 the net signed area bounded by f over the interval
[a, d], where by the phrase “signed area” we indicate that we are attaching a minus sign to
the areas of regions that fall below the horizontal axis.

Finally, we recall that if the function f represents the velocity of a moving object, the sum
of the areas bounded by the curve tells us the total distance traveled over the relevant time
interval, while the net signed area bounded by the curve computes the object’s change in
position on the interval.

Activity 4.2.4. Suppose that an object moving along a straight line path has its velocity
v (in feet per second) at time ¢ (in seconds) given by

t)= =t =3t + .
v(t) =5 +3

a. Compute Ms, the middle Riemann sum, for v on the time interval [1, 5]. Be sure
to clearly identify the value of At as well as the locations of ¢y, t1, - - -, t5. In addi-
tion, provide a careful sketch of the function and the corresponding rectangles
that are being used in the sum.

b. Building on your work in (a), estimate the total change in position of the object
on the interval [1, 5].

¢. Building on your work in (a) and (b), estimate the total distance traveled by the
object on [1, 5].

d. Use appropriate computing technology? to compute Mg and M. What exact
value do you think the middle sum eventually approaches as n increases with-
out bound? What does that number represent in the physical context of the
overall problem?

2For instance, consider the applet at http://gvsu.edu/s/a9 and change the function and adjust the locations of
the blue points that represent the interval endpoints a and b.
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4.2.4 Summary

* A Riemann sum is simply a sum of products of the form f(x?)Ax that estimates the
area between a positive function and the horizontal axis over a given interval. If the
function is sometimes negative on the interval, the Riemann sum estimates the differ-
ence between the areas that lie above the horizontal axis and those that lie below the
axis.

¢ The three most common types of Riemann sums are left, right, and middle sums, but
we can also work with a more general Riemann sum. The only difference among these
sums is the location of the point at which the function is evaluated to determine the
height of the rectangle whose area is being computed. For a left Riemann sum, we
evaluate the function at the left endpoint of each subinterval, while for right and mid-
dle sums, we use right endpoints and midpoints, respectively.

¢ The left, right, and middle Riemann sums are denoted L, R,, and M,,, with formulas

n-1

Ly = f(xo)Ax + f(x1)Ax + -+ fxn)Ax = ) f(x;)Ax,
i=0

Ry = f(x)Ax + f(x)Ax + -+ f(xy)Ax = ) f(x;)Ax,
i=1

M, = f(x1)Ax + f(x)Ax + -+ f(x,)Ax = Zn:f(fi)Ax,
i=1

where xo = a4, x; = a + iAx, and x, = b, using Ax = bn;” For the midpoint sum,
Xi = (xi-1 +x7)/2.
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4.2.5 Exercises

=

WeBWork

224

Evaluating Riemann sums for a quadratic function. The rectangles in the graph below
2
illustrate a left endpoint Riemann sum for f(x) = Tx + 2x on the interval [3, 7].

The value of this left endpoint Riemann sum is , and this Riemann sumis (O an
overestimate of O equalto 0O an underestimate of O there is ambiguity) the area
of the region enclosed by y = f(x), the x-axis, and the vertical lines x =3 and x = 7.

]
L]

F1 T ] i i i Y E]
=1

Left endpoint Riemann sum for
Y= _sz +2xon[3,7]

The rectangles in the graph below illustrate a right endpoint Riemann sum for f(x) =
2

Tx + 2x on the interval [3, 7].

The value of this right endpoint Riemann sum is and this Riemann sum
is (O an overestimate of DO equalto O an underestimate of 0O there is ambiguity)
the area of the region enclosed by y = f(x), the x-axis, and the vertical lines x = 3 and
x=7.

p

FT — 4 Y E
i |

Right endpoint Riemann sum for
y= *sz +2xon[3,7]




4.2 Riemann Sums

Estimating distance traveled with a Riemann sum from data. Your task is to estimate
how far an object traveled during the time interval 0 < t < 8, but you only have the ****

following data about the velocity of the object.

time (sec) 0|1 |2 |3|4|5|6]|7]|38
velocity (feet/sec) | -4 | -2 | -3 |1 |2 |3 |23 |4

To get an idea of what the velocity function might look like, you pick up a black pen,
plot the data points, and connect them by curves. Your sketch looks something like the
black curve in the graph below.

B

F1

|
o«

=5|

Left endpoint approximation

You decide to use a left endpoint Riemann sum to estimate the total displacement. So,
you pick up a blue pen and draw rectangles whose height is determined by the velocity
measurement at the left endpoint of each one-second interval. By using the left end-
point Riemann sum as an approximation, you are assuming that the actual velocity is
approximately constant on each one-second interval (or, equivalently, that the actual
acceleration is approximately zero on each one-second interval), and that the velocity
and acceleration have discontinuous jumps every second. This assumption is proba-
bly incorrect because it is likely that the velocity and acceleration change continuously
over time. However, you decide to use this approximation anyway since it seems like
a reasonable approximation to the actual velocity given the limited amount of data.

(A) Using the left endpoint Riemann sum, find approximately how far the object trav-
eled.

Using the same data, you also decide to estimate how far the object traveled using a
right endpoint Riemann sum. So, you sketch the curve again with a black pen, and
draw rectangles whose height is determined by the velocity measurement at the right
endpoint of each one-second interval.
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1

4

=5

Right endpoint approximation

(B) Using the right endpoint Riemann sum, find approximately how far the object trav-
eled.

3.  Writing basic Riemann sums. On a sketch of y = e¥, represent the left Riemann sum

WeBWork

1
with n = 2 approximating /0 e* dx. Write out the terms of the sum, but do not evaluate
it.

1
On another sketch, represent the right Riemann sum with n = 2 approximating /0 e*dx.
Write out the terms of the sum, but do not evaluate it. Which sum is an overestimate?
Which sum is an underestimate?

4. Consider the function f(x) = 3x + 4.

a. Compute My for y = f(x) on the interval [2,5]. Be sure to clearly identify the
value of Ax, as well as the locations of xg, x1, ..., x4. Include a careful sketch of
the function and the corresponding rectangles being used in the sum.

b. Use a familiar geometric formula to determine the exact value of the area of the
region bounded by y = f(x) and the x-axis on [2, 5].

c. Explain why the values you computed in (a) and (b) turn out to be the same. Will
this be true if we use a number different than #n = 4 and compute M,,? Will L4 or
R4 have the same value as the exact area of the region found in (b)?

d. Describe the collection of functions g for which it will always be the case that M,,,
regardless of the value of 1, gives the exact net signed area bounded between the
function g and the x-axis on the interval [a, b].

5. Let S be the sum given by

S=((14)2%+1)-0.4+((1.8)%>+1)-0.4+((2.2)>+1)-0.4+((2.6)>+1)- 0.4+ ((3.0)> +1) - 0.4.

a. Assume that S is a right Riemann sum. For what function f and what interval
[a,b] is S this function’s Riemann sum? Why?

b. How does your answer to (a) change if S is a left Riemann sum? a middle Riemann
sum?
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d.

4.2 Riemann Sums

Suppose that S really is a right Riemann sum. What is geometric quantity does S
approximate?

Use sigma notation to write a new sum R that is the right Riemann sum for the
same function, but that uses twice as many subintervals as S.

6. A car traveling along a straight road is braking and its velocity is measured at several
different points in time, as given in the following table.

C.

d.

seconds, t 0 03 06 09 12 15 1.8
Velocity in ft/sec, v(t) 100 88 74 59 40 19

Table 4.2.8: Data for the braking car.

Plot the given data on a set of axes with time on the horizontal axis and the ve-
locity on the vertical axis.

Estimate the total distance traveled during the car the time brakes using a middle
Riemann sum with 3 subintervals.

Estimate the total distance traveled on [0, 1.8] by computing L¢, Re, and %(L6 +Rg).

Assuming that v(t) is always decreasing on [0, 1.8], what is the maximum possi-
ble distance the car traveled before it stopped? Why?

7.  The rate at which pollution escapes a scrubbing process at a manufacturing plant in-
creases over time as filters and other technologies become less effective. For this par-
ticular example, assume that the rate of pollution (in tons per week) is given by the
function r that is pictured in Figure 4.2.9.

a.

b.

. Determine an upper bound on the

Use the graph to estimate the value
of My on the interval [0, 4].

tons/week
What is the meaning of My in terms 41
of the pollution discharged by the y=r()
plant? T

Suppose that r(t) = 0.5¢%. Use
this formula for r to compute L5 on
[0, 4].

total amount of pollution that can
escape the plant during the pic-
tured four week time period that is
accurate within an error of at most

one ton of pollution. Figure 4.2.9: The rate, 7(t), of pollution
in tons per week.
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4.3 The Definite Integral

Motivating Questions

¢ How does increasing the number of subintervals affect the accuracy of the approxi-
mation generated by a Riemann sum?

* What is the definition of the definite integral of a function f over the interval [a, b]?

* What does the definite integral measure exactly, and what are some of the key prop-
erties of the definite integral?

In Figure 4.3.1, we see evidence that increasing the number of rectangles in a Riemann sum
improves the accuracy of the approximation of the net signed area bounded by the given
function.

Figure 4.3.1: At left and center, two left Riemann sums for a function f that is sometimes
negative; at right, the exact areas bounded by f on the interval [a, d].

We therefore explore the natural idea of allowing the number of rectangles to increase with-
out bound. In an effort to compute the exact net signed area we also consider the differences
among left, right, and middle Riemann sums and the different results they generate as the
value of 7 increases. We begin with functions that are exclusively positive on the interval
under consideration.

Preview Activity 4.3.1. Consider the applet found at http://gvsu.edu/s/a9'. There,
you will initially see the situation shown in Figure 4.3.2.

Note that the value of the chosen Riemann sum is displayed next to the word “rela-
tive,” and that you can change the type of Riemann sum being computed by dragging
the point on the slider bar below the phrase “sample point placement.”
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Sample Point Placement

F Relative  right endpoint
~ Show ———e

I~ Random*

I~ Upper Sum

I~ Lower Sum

Number of Subintervals

n=10
B —— ]

Approximations

Relative: 4.90595
Random: 5.87868
Upper: 8.58074
Lower: 4.12815

Integral: 6.32356
* Make sure the applet has

focus, then use Ctrl-R or F9
to recompute random values

f (%) =sin@0-x*/10+3

4.3 The Definite Integral

. x2
f(x) =sin(2 x) -1 +3

Figure 4.3.2: A right Riemann sum with 10 subintervals for the function
f(x) = sin(2x) — % + 3 on the interval [1, 7]. The value of the sum is Ryg = 4.90595.

Explore to see how you can change the window in which the function is viewed, as
well as the function itself. You can set the minimum and maximum values of x by
clicking and dragging on the blue points that set the endpoints; you can change the
function by typing a new formula in the “f(x)” window at the bottom; and you can
adjust the overall window by “panning and zooming” by using the Shift key and the
scrolling feature of your mouse. More information on how to pan and zoom can be

found at http://gvsu.edu/s/FL

Work accordingly to adjust the applet so that it uses a left Riemann sum with n = 5
subintervals for the function is f(x) = 2x + 1. You should see the updated figure

shown in Figure 4.3.3. Then, answer the following questions.

a. Update the applet (and view window, as needed) so that the function being
considered is f(x) = 2x +1 on [1,4], as directed above. For this function on this
interval, compute L,, M,, R, forn =5, n = 25, and n = 100. What appears to
be the exact area bounded by f(x) = 2x + 1 and the x-axis on [1, 4]?

b. Use basic geometry to determine the exact area bounded by f(x) = 2x + 1 and

the x-axis on [1, 4].

c. Based on your work in (a) and (b), what do you observe occurs when we increase

the number of subintervals used in the Riemann sum?

d. Update the applet to consider the function f(x) = x> + 1 on the interval [1,4]
(note that you need to enter “x * 2 + 1” for the function formula). Use the
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applet to compute L,, M,,, R, forn =5, n = 25, and n = 100. What do you
conjecture is the exact area bounded by f(x) = x> + 1 and the x-axis on [1,4]?

e. Why can we not compute the exact value of the area bounded by f(x) = x? + 1
and the x-axis on [1, 4] using a formula like we did in (b)?

Sample Point Placement
F Relative left endpoint
F~ Show #————
I~ Random*
I~ Upper Sum
I~ Lower Sum

Number of Subintervals

n=5
L ———

Approximations

Relative: 16.2

Random: 18.29319
Upper: 19.8
Lower: 16.2

Integral: 18 _2

* Make sure the applet has
focus, then use Ctrl-R or F9 —4
to recompute random values

f(X)= 2x+ 1

Figure 4.3.3: A left Riemann sum with 5 subintervals for the function f(x) =2x +1
on the interval [1,4]. The value of the sum is L5 = 16.2.

4.3.1 The definition of the definite integral

In Preview Activity 4.3.1, we saw that as the number of rectangles got larger and larger, the
values of L,,, M, and R, all grew closer and closer to the same value. It turns out that this
occurs for any continuous function on an interval [a, b], and also for a Riemann sum using
any point x;_,; in the interval [x;, x;+1]. Thus, as we let n — oo, it doesn’t really matter where
we choose to evaluate the function within a given subinterval, because

n
lim L, = lim R, = lim M, = lim Zf(x:)Ax.
n—oo n—oo =

n—o0 n—oo

That these limits always exist (and share the same value) when f is continuous? allows us
to make the following definition.

Marc Renault, Shippensburg University, Geogebra Applets for Calclulus, http://gvsu.edu/s/5p.

2It turns out that a function need not be continuous in order to have a definite integral. For our purposes, we
assume that the functions we consider are continuous on the interval(s) of interest. It is straightforward to see that
any function that is piecewise continuous on an interval of interest will also have a well-defined definite integral.
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Figure 4.3.5: A continuous function f on the interval [a, d].

Definition 4.3.4 The definite integral of a continuous function f on the interval [a, b], de-
noted fu ’ f(x)dx, is the real number given by

b n
f(x)dx = lim f(x))Ax,
'/a‘ 11—)00; !
where Ax = h%”, x; =a+iAx (fori = 0,...,n), and X} satisfies x;_1 < x; <X (fori =
1,...,n).

We call the symbol f the integral sign, the values a and b the limits of integration, and the

function f the integrand. The process of determining the real number fa ’ f(x)dx is called
evaluating the definite integral. While there are several different interpretations of the definite

integral, for now the most important is that /a ’ f(x) dx measures the net signed area bounded
by y = f(x) and the x-axis on the interval [, b].

For example, if f is the function pictured in Figure 4.3.5, and A1, A, and A3 are the exact
areas bounded by f and the x-axis on the respective intervals [a, b], [, c], and [c, d], then

b c
/ﬂ f(x)dx=A1,/b f(x)dx = —A,,
d
[ rewix=as,
d
and [ fx)dx = Ay - A+

We can also use definite integrals to express the change in position and the distance traveled
by a moving object. If v is a velocity function on an interval [a, b], then the change in position
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Figure 4.3.6: The area bounded by f(x) = 2x + 1 and the x-axis on the interval [1, 4].

of the object, s(b) — s(a), is given by

b
s(b) —s(a) = / v(t)dt.

If the velocity function is nonnegative on [a, b], then /ﬂ ! v(t) dt tells us the distance the object
traveled. If the velocity is sometimes negative on [4, b], we can use definite integrals to find
the areas bounded by the function on each interval where v does not change sign, and the
sum of these areas will tell us the distance the object traveled.

To compute the value of a definite integral from the definition, we have to take the limit
of a sum. While this is possible to do in select circumstances, it is also tedious and time-
consuming, and does not offer much additional insight into the meaning or interpretation
of the definite integral. Instead, in Section 4.4, we will learn the Fundamental Theorem of
Calculus, which provides a shortcut for evaluating a large class of definite integrals. This
will enable us to determine the exact net signed area bounded by a continuous function and
the x-axis in many circumstances.

For now, our goal is to understand the meaning and properties of the definite integral, rather
than to compute its value. To do this, we will rely on the net signed area interpretation of
the definite integral. So we will use as examples curves that produce regions whose areas
we can compute exactly through area formulas. We can thus compute the exact value of the
corresponding integral.

For instance, if we wish to evaluate the definite integral A4(2x + 1) dx, we observe that the
region bounded by this function and the x-axis is the trapezoid shown in Figure 4.3.6. By
the formula for the area of a trapezoid, A = %(3 +9)-3=18,s0

4
/ (2x +1)dx = 18.
1
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Activity 4.3.2. Use known geometric formulas and the net signed area interpretation
of the definite integral to evaluate each of the definite integrals below.

a. /013xdx
b [l @2-2x)dx
c. Lll\ll—xzdx

d. /_ 43 g(x) dx, where g is the function pictured in Figure 4.3.7. Assume that each
portion of g is either part of a line or part of a circle.

Figure 4.3.7: A function g that is piecewise defined; each piece of the function is part
of a circle or part of a line.

4.3.2 Some properties of the definite integral

Regarding the definite integral of a function f over an interval [a, b] as the net signed area
bounded by f and the x-axis, we discover several standard properties of the definite integral.
It is helpful to remember that the definite integral is defined in terms of Riemann sums,
which consist of the areas of rectangles.

For any real number a and the definite integral fa ‘ f(x)dx it is evident that no area is en-
closed, because the interval begins and ends with the same point. Hence,

[ If f is a continuous function and 7 is a real number, then fu ‘ f(x)dx =0. J

Next, we consider the result of subdividing the interval of integration. In Figure 4.3.8, we
see that

b .
‘/uf(x)dx=A1,/bf(x)dx=A2,

[
and/ flx)dx = A1+ A,
a
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which illustrates the following general rule.

Figure 4.3.8: The area bounded by y = f(x) on the interval [a, c].

If f is a continuous function and 4, b, and c are real numbers, then

/ucf(x)dx = ‘/ubf(x)dx+/bcf(x)dx.

While this rule is easy to see if a < b < ¢, it in fact holds in general for any values of 4, b, and
c. Another property of the definite integral states that if we reverse the order of the limits of
integration, we change the sign of the integral’s value.

If f is a continuous function and a and b are real numbers, then

Aaf(x)dx = —/ﬂbf(x)dx.

This result makes sense because if we integrate from a to b, then in the defining Riemann
sum we set Ax = b%, while if we integrate from b to a, we have Ax = % = —h%”, and this

is the only change in the sum used to define the integral.

There are two additional useful properties of the definite integral. When we worked with
derivative rules in Chapter 2, we formulated the Constant Multiple Rule and the Sum Rule.
Recall that the Constant Multiple Rule says that if f is a differentiable function and k is a
constant, then

Lkf )] = K0,
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4.3 The Definite Integral

and the Sum Rule says that if f and g are differentiable functions, then
d ’ ’
L) + 9] = () + /()

These rules are useful because they allow to deal individually with the simplest parts of
certain functions by taking advantage of addition and multiplying by a constant. In other
words, the process of taking the derivative respects addition and multiplying by constants
in the simplest possible way.

It turns out that similar rules hold for the definite integral. First, let’s consider the functions
pictured in Figure 4.3.9.

B= 2f(x,~)Ax

y=2f(x)

a Xi  Xit b a Xi  Xitl b

Figure 4.3.9: The areas bounded by y = f(x) and y = 2f(x) on [a, b].

Because multiplying the function by 2 doubles its height at every x-value, we see that the
height of each rectangle in a left Riemann sum is doubled, f(x;) for the original function,
versus 2 f(x;) in the doubled function. For the areas A and B, it follows B = 2A. As this is
true regardless of the value of n or the type of sum we use, we see that in the limit, the area
of the red region bounded by y = 2f(x) will be twice the area of the blue region bounded
by y = f(x). As there is nothing special about the value 2 compared to an arbitrary constant
k, the following general principle holds.

Constant Multiple Rule.

If f is a continuous function and k is any real number, then
b b
/ k- f(x)dx :k/ f(x)dx.
a a

We see a similar situation with the sum of two functions f and g.
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N\ 0= () + 5w

\ f+sg
A= f(x;)Dx ¥
‘ B= g(x,-)Ax c
/] A g
B $
T a Xi  Xitl b a Xi  Xitl b a Xi  Xitl b

Figure 4.3.10: The areas bounded by y = f(x) and y = g(x) on [4, b], as well as the area
bounded by y = f(x) + g(x).

If we take the sum of two functions f and g at every point in the interval, the height of the
function f + g is given by (f + g)(x;) = f(x;) + g(x;). Hence, for the pictured rectangles
with areas A, B, and C, it follows that C = A + B. Because this will occur for every such
rectangle, in the limit the area of the gray region will be the sum of the areas of the blue and
red regions. In terms of definite integrals, we have the following general rule.

Sum Rule.

If f and g are continuous functions, then

b b b
[ U@+ g@iax= [ o+ [ g

The Constant Multiple and Sum Rules can be combined to say that for any continuous func-
tions f and g and any constants ¢ and k,

b b b
/[cf(x)ikg(x)]dx=c/ f(x)dxik/ g(x)dx.

Activity 4.3.3. Suppose that the following information is known about the functions
f,g,x% and x3:

o [P fxydx=-3; [; f(x)dx =2
o /Ozg(x)dxzél;/;g(x)dx:—l
. /Ozxzdng;/;xzdx:%

2 5
3 = 4- 3 — 609
Ofoxdx—él,fzxdx— i

Use the provided information and the rules discussed in the preceding section to
evaluate each of the following definite integrals.
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4.3 The Definite Integral

a. /52 f(x)dx d. /25(3x2 —4x%) dx
b. /05 g(x)dx
o J(f(x) + g(x)) dx e. ['(2x3 - 7g(x)) dx

4.3.3 How the definite integral is connected to a function’s average value

One of the most valuable applications of the definite integral is that it provides a way to
discuss the average value of a function, even for a function that takes on infinitely many
values. Recall that if we wish to take the average of n numbers y1, v, ..., y,, we compute

ittty
= ” .

AVG

Since integrals arise from Riemann sums in which we add 7 values of a function, it should
not be surprising that evaluating an integral is similar to averaging the output values of a
function. Consider, for instance, the right Riemann sum R, of a function f, which is given

by
Ry = f(x)Ax + f(x2)Ax + -+ + f(xy)Ax = (f(x1) + f(x2) + -+ + f(x,))Ax.

Since Ax = b%, we can thus write

Ry = (F() + fxa) + -+ fla)) - 2

fla) + fOo) + -+ fxn)

n

=(b-a) (4.3.1)

We see that the right Riemann sum with # subintervals is just the length of the interval (b—a)
times the average of the n function values found at the right endpoints. And just as with
our efforts to compute area, the larger the value of n we use, the more accurate our average
will be. Indeed, we will define the average value of f on [a, b] to be

flr) + fxg) + -+ fxn)

m
n

favGlap) = nl

i
But we also know that for any continuous function f on [a, b], taking the limit of a Riemann

sum leads precisely to the definite integral. Thatis, lim, . R, = fa ’ f(x)dx,and thus taking
the limit as n — oo in Equation (4.3.1), we have that

b
[ #@ax= -0 ficn 432)

Solving Equation (4.3.2) for favg[a,»), we have the following general principle.
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Average value of a function.

If f is a continuous function on [4, b], then its average value on [a, b] is given by the
formula

1 b
favaiap) = = / f(x)dx.
a

Equation (4.3.2) tells us another way to interpret the definite integral: the definite integral
of a function f from a to b is the length of the interval (b — a) times the average value of the
function on the interval. In addition, when the function f is nonnegative on [a, b], Equa-
tion (4.3.2) has a natural visual interpretation.

y=f(x) y=f(x) y=f(x)

Vave [a,b] \

(b - a) : fAvc[a,b]

Wi

Figure 4.3.11: A function y = f(x), the area it bounds, and its average value on [a, b].

Consider Figure 4.3.11, where we see at left the shaded region whose area is /u ’ f(x)dx, at
center the shaded rectangle whose dimensions are (b —a) by favg|a 5], and at right these two
figures superimposed. Note that in dark green we show the horizontal line y = favg(a,s]-
Thus, the area of the green rectangle is given by (b — a) - favgja,b), Which is precisely the

value of fa ' f(x)dx. The area of the blue region in the left figure is the same as the area of
the green rectangle in the center figure. We can also observe that the areas A; and A; in the
rightmost figure appear to be equal. Thus, knowing the average value of a function enables
us to construct a rectangle whose area is the same as the value of the definite integral of the
function on the interval. The java applet® at http://gvsu.edu/s/az provides an opportunity
to explore how the average value of the function changes as the interval changes, through
an image similar to that found in Figure 4.3.11.

Activity 4.3.4. Suppose that v(t) = /4 — (t — 2)? tells us the instantaneous velocity of
a moving object on the interval 0 < ¢ < 4, where t is measured in minutes and v is
measured in meters per minute.

a. Sketch an accurate graph of y = v(t). What kind of curve is y = /4 — (t — 2)??

b. Evaluate /04 v(t) dt exactly.

*David Austin, http://gvsu.edu/s/5r.
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c. In terms of the physical problem of the moving object with velocity v(t), what

4
is the meaning of /0 v(t)dt? Include units on your answer.
d. Determine the exact average value of v(t) on [0, 4]. Include units on your answer.

e. Sketch a rectangle whose base is the line segment from ¢t = 0 to ¢t = 4 on the
4
t-axis such that the rectangle’s area is equal to the value of fo v(t)dt. What is
the rectangle’s exact height?

f. How can you use the average value you found in (d) to compute the total dis-
tance traveled by the moving object over [0, 4]?

4.3.4 Summary

¢ Any Riemann sum of a continuous function f on aninterval [a, b] provides an estimate
of the net signed area bounded by the function and the horizontal axis on the interval.
Increasing the number of subintervals in the Riemann sum improves the accuracy of
this estimate, and letting the number of subintervals increase without bound results
in the values of the corresponding Riemann sums approaching the exact value of the
enclosed net signed area.

¢ When we take the limit of Riemann sums, we arrive at what we call the definite integral

of f over the interval [a, b]. In particular, the symbol /u ’ f(x)dx denotes the definite
integral of f over [a, b], and this quantity is defined by the equation

/b f(x)dx = }}grgozn:f(xj)Ax,
a i=1

where Ax = b%, x; =a+iAx (fori =0,...,n), and X3 satisfies x;_1 < x; < X (for
i=1,...,n).

* The definite integral fu ’ f(x) dx measures the exact net signed area bounded by f and
the horizontal axis on [a, b]; in addition, the value of the definite integral is related to
what we call the average value of the function on [a, b]: favg[a,s) = ﬁ . /ﬂ ’ f(x)dx. In

b
the setting where we consider the integral of a velocity function v, fa v(t) dt measures
the exact change in position of the moving object on [4, b]; when v is nonnegative,

/u ’ v(t) dt is the object’s distance traveled on [a, b].

¢ The definite integral is a sophisticated sum, and thus has some of the same natural
properties that finite sums have. Perhaps most important of these is how the definite
integral respects sums and constant multiples of functions, which can be summarized
by the rule

b b b
/[cf(x)ikg(x)]dx:c/ f(x)dxik/ g(x)dx

where f and g are continuous functions on [4, b] and ¢ and k are arbitrary constants.
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Chapter 4 The Definite Integral

4.3.5 Exercises

<4 1. Evaluating definite integrals from graphical information. Use the following figure,
weBvark which shows a graph of f(x) to find each of the indicated integrals.

LN

Note that the first area (with vertical,
red shading) is 18 and the second (with
oblique, black shading) is 6.

A. /ﬂh f(x)dx
B. ﬁc f(x)dx
C. fac f(x)dx
D. [} 1f(x)ldx

2.  Estimating definite integrals from a graph. Use the graph of f(x) shown below to find

WesWork the following integrals.

]

= Eris

=2

A. [ f(x)dx

B. If the vertical red shaded area in the
graph has area A, estimate: f_  f(x)dx
(Your estimate may be written in terms of A.)

2§ 3. Finding the average value of a linear function. Find the average value of f(x) = 7x+1

Wesork over [3, 8].

®¥q 4. Finding the average value of a function given graphically. The figure below to the left

.

weaark is a graph of f(x), and below to the right is g(x).
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4.3 The Definite Integral

L5 L.5
a5 a5
A5 97 o | Fa.5| D2 D
-85 -85
f(x) g(x)

(a) What is the average value of f(x) on0 < x < 2?
(b) What is the average value of g(x) on 0 < x < 2?
(c) What is the average value of f(x) - g(x)on0 < x < 2?

(d) Is the following statement true?

Average(f) - Average(g) = Average(f - g)

Nt

Estimating a definite integral and average value from a graph. Use the figure below,
which shows the graph of y = f(x), to answer the following questions. wesMerk

]

A. Estimate the integral: f_ 33 f(x)dx
B. Which of the following average values
of f islarger?

® Between x = -3 and x =3

1{@8
/\ ® Betweenx =0and x =3

-4

Using rules to combine known integral values. Suppose

WeBWork

45 -75 —4.5
[9 f(x)dx =10, [9 f(x)dx =8, and [6 f(x)dx =10.

Find
-6 -7.5
/ f(x)dx  and / (10f(x) - 8) dx.
-7.5 -6

241



Chapter 4 The Definite Integral

7. The velocity of an object moving along an axis is given by the piecewise linear function
v that is pictured in Figure 4.3.12. Assume that the object is moving to the right when
its velocity is positive, and moving to the left when its velocity is negative. Assume that
the given velocity function is valid for t =0 to ¢t = 4.

a. Write an expression involving defi-
nite integrals whose value is the to- 21
tal change in position of the object
on the interval [0, 4].

| ft/sec

b. Use the provided graph of v to
determine the value of the total
change in position on [0, 4].

c. Write an expression involving defi-
nite integrals whose value is the to-
tal distance traveled by the object
on [0,4]. What is the exact value of
the total distance traveled on [0, 4]?

d. What is the object’s exact average

velocity on [0, 4]2 Figure 4.3.12: The velocity function of a

moving object.
e. Find an algebraic formula for the

object’s position function on [0, 1.5]

that satisfies s(0) = 0.

8.  Suppose that the velocity of a moving object is given by v(t) = ¢(t — 1)(f — 3), measured
in feet per second, and that this function is valid for 0 < t < 4.

a. Write an expression involving definite integrals whose value is the total change
in position of the object on the interval [0, 4].

b. Use appropriate technology (such as http://gvsu.edu/s/a%*) to compute Rie-
mann sums to estimate the object’s total change in position on [0,4]. Work to
ensure that your estimate is accurate to two decimal places, and explain how you
know this to be the case.

c. Write an expression involving definite integrals whose value is the total distance
traveled by the object on [0, 4].

d. Use appropriate technology to compute Riemann sums to estimate the object’s
total distance travelled on [0, 4]. Work to ensure that your estimate is accurate to
two decimal places, and explain how you know this to be the case.

e. What is the object’s average velocity on [0, 4], accurate to two decimal places?

9. Consider the graphs of two functions f and g that are provided in Figure 4.3.13. Each
piece of f and g is either part of a straight line or part of a circle.

4Marc Renault, Shippensburg University.
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y=glx
2 2 )
y = f(x)
1 1
1 &\\j/ 2 3 4
.14 14
24 24

Figure 4.3.13: Two functions f and g.

a. Determine the exact value of fol [f(x)+ g(x)]dx.

o

. Determine the exact value of /14[2 f(x)—3g(x)]dx.
c. Find the exact average value of h(x) = g(x) — f(x) on [0, 4].

d. For what constant ¢ does the following equation hold?

4 4
/0 cdx = /0 [F() + 9] dx

10. Let f(x) =3 —x?and g(x) = 2x2.

a. On the interval [-1, 1], sketch a labeled graph of y = f(x) and write a definite
integral whose value is the exact area bounded by y = f(x) on [-1,1].

b. On the interval [-1, 1], sketch a labeled graph of y = g(x) and write a definite
integral whose value is the exact area bounded by y = g(x) on [-1, 1].

c. Write an expression involving a difference of definite integrals whose value is the
exact area that lies between y = f(x) and y = g(x) on [-1, 1].

d. Explain why your expression in (c) has the same value as the single integral
1
JAlf @) = ()] dx.

e. Explain why, in general, if p(x) > g(x) for all x in [a, b], the exact area between
y =p(x) and y = q(x) is given by

b
/ [p(x) - g(x)] dx.

243



Chapter 4 The Definite Integral

4.4 The Fundamental Theorem of Calculus

Motivating Questions

¢ How can we find the exact value of a definite integral without taking the limit of a
Riemann sum?

e What is the statement of the Fundamental Theorem of Calculus, and how do anti-
derivatives of functions play a key role in applying the theorem?

¢ What is the meaning of the definite integral of a rate of change in contexts other than
when the rate of change represents velocity?

Much of our work in Chapter 4 has been motivated by the velocity-distance problem: if we
know the instantaneous velocity function, v(t), for a moving object on a given time interval
[a, b], can we determine the distance it traveled on [a, b]? If the velocity function is nonneg-
ative on [a, b], the area bounded by y = v(f) and the t-axis on [a, b] is equal to the distance

traveled. This area is also the value of the definite integral fg ’ u(t) dt. If the velocity is some-
times negative, the total area bounded by the velocity function still tells us distance traveled,
while the net signed area tells us the object’s change in position.

For instance, for the velocity function in Figure 4.4.1, the total distance D traveled by the
moving object on [a, b] is
D=A1+A;+A;3,

and the total change in the object’s position is
S(b) - S(El) =A] - A+ As.

The areas A1, Ay, and A3 are each given by definite integrals, which may be computed by
limits of Riemann sums (and in special circumstances by geometric formulas).

y=v(t)

Figure 4.4.1: A velocity function that is sometimes negative.
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4.4 The Fundamental Theorem of Calculus
We turn our attention to an alternate approach.

Preview Activity 4.4.1. A student with a third floor dormitory window 32 feet off the
ground tosses a water balloon straight up in the air with an initial velocity of 16 feet
per second. It turns out that the instantaneous velocity of the water balloon is given
by v(t) = —32f + 16, where v is measured in feet per second and f is measured in
seconds.

a. Let s(t) represent the height of the water balloon above ground at time ¢, and
note that s is an antiderivative of v. That is, v is the derivative of s: s’(t) = v(t).
Find a formula for s(#) that satisfies the initial condition that the balloon is tossed
from 32 feet above ground. In other words, make your formula for s satisfy
s(0) = 32.

b. When does the water balloon reach its maximum height? When does it land?
c. Compute s(%) —5(0),s(2) - s(%), and s(2) — s(0). What do these represent?

d. What is the total vertical distance traveled by the water balloon from the time it
is tossed until the time it lands?

e. Sketch a graph of the velocity function y = v(t) on the time interval [0, 2]. What
is the total net signed area bounded by y = v(t) and the t-axis on [0, 2]? Answer
this question in two ways: first by using your work above, and then by using a
familiar geometric formula to compute areas of certain relevant regions.

4.4.1 The Fundamental Theorem of Calculus

Suppose we know the position function s(t) and the velocity function v(t) of an object mov-
ing in a straight line, and for the moment let us assume that v(t) is positive on [a, b]. Then,
as shown in Figure 4.4.2, we know two different ways to compute the distance, D, the object
travels: one is that D = s(b) — s(a), the object’s change in position. The other is the area

under the velocity curve, which is given by the definite integral, so D = fg ’ v(t)dt. Since
both of these expressions tell us the distance traveled, it follows that they are equal, so

b
s(b) —s(a) = / v(t)dt. (4.4.1)

Equation (4.4.1) holds even when velocity is sometimes negative, because s(b) — s(a),the
object’s change in position, is also measured by the net signed area on [a, b] which is given

by fab o(t)dt.

Perhaps the most powerful fact Equation (4.4.1) reveals is that we can compute the integral’s
value if we can find a formula for s. Remember, s and v are related by the fact that v is the
derivative of s, or equivalently that s is an antiderivative of v.

Example 4.4.3 Determine the exact distance traveled on [1, 5] by an object with velocity func-
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Chapter 4 The Definite Integral

Figure 4.4.2: Finding distance traveled when we know a velocity function v.

tion v(t) = 3t2 + 40 feet per second. The distance traveled on the interval [1, 5] is given by

5 5
_ _ 2 _ _
D = ‘/1 o(t)dt = /1 (3t* +40) dt = s(5) — s(1),

where s is an antiderivative of v. Now, the derivative of #3 is 3t2 and the derivative of 40¢ is
40, so it follows that s(t) = t3 + 40t is an antiderivative of v. Therefore,

5
D= / 3t2 +40dt = s(5) — s(1)
1
=(5°+40-5) - (13 + 40 - 1) = 284 feet.

Note the key lesson of Example 4.4.3: to find the distance traveled, we need to compute the
area under a curve, which is given by the definite integral. But to evaluate the integral, we
can find an antiderivative, s, of the velocity function, and then compute the total change in
s on the interval. In particular, we can evaluate the integral without computing the limit
of a Riemann sum. It will be convenient to have a shorthand symbol for a function’s anti-
derivative. For a continuous function f, we will often denote an antiderivative of f by F,
so that F/(x) = f(x) for all relevant x. Using the notation V in place of s (so that V is an
antiderivative of v) in Equation (4.4.1), we can write

b
V(b)-V(a) = / o(t) dt. (4.4.2)

Now, to evaluate the definite integral fa ! f(x)dx for an arbitrary continuous function f, we
could certainly think of f as representing the velocity of some moving object, and x as the
variable that represents time. But Equations (4.4.1) and (4.4.2) hold for any continuous ve-
locity function, even when v is sometimes negative. So Equation (4.4.2) offers a shortcut
route to evaluating any definite integral, provided that we can find an antiderivative of the
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4.4 The Fundamental Theorem of Calculus

Figure 4.4.4: The exact area of the region enclosed by v(t) = 3t> + 40 on [1,5].

integrand. The Fundamental Theorem of Calculus (FTC) summarizes these observations.

Fundamental Theorem of Calculus.
If f isa continuous function on [4, b], and F is any antiderivative of f, then fu ! flx)dx =

F(b) - F(a).

A common alternate notation for F(b) — F(a) is
F(b) - F(a) = F(x);,

where we read the righthand side as “the function F evaluated from a to b.” In this notation,

the FTC says that
b

[ rwax=rot.

a

The FTC opens the door to evaluating a wide range of integrals if we can find an antideriv-
[%x3] = x2, the FIC tells us that

ative F for the integrand f. For instance since

dx
1
/ x2dx =
0

1

x3

Q=

0
(17 - 307

QW= W=

But finding an antiderivative can be far from simple; it is often difficult or even impossible.
While we can differentiate just about any function, even some relatively simple functions

don’t have an elementary antiderivative. A significant portion of integral calculus (which
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is the main focus of second semester college calculus) is devoted to the problem of finding
antiderivatives.

Activity 4.4.2. Use the Fundamental Theorem of Calculus to evaluate each of the
following integrals exactly. For each, sketch a graph of the integrand on the relevant
interval and write one sentence that explains the meaning of the value of the integral
in terms of the (net signed) area bounded by the curve.

a. f_41(2—2x)dx d. /_11 x° dx

b. /0% sin(x) dx

c. fol e* dx e. f02(3x3 —2x% —e¥)dx

4.4.2 Basic antiderivatives

The general problem of finding an antiderivative is difficult. In part, this is due to the fact
that we are trying to undo the process of differentiating, and the undoing is much more
difficult than the doing. For example, while it is evident that an antiderivative of f(x) =
sin(x) is F(x) = — cos(x) and that an antiderivative of g(x) = x? is G(x) = %x , combinations
of f and g can be far more complicated. Consider the functions

sin(x)

5sin(x) — 4x2, x?sin(x), ——, and sin(x?).
x

What is involved in trying to find an antiderivative for each? From our experience with de-
rivative rules, we know that derivatives of sums and constant multiples of basic functions
are simple to execute, but derivatives involving products, quotients, and composites of fa-
miliar functions are more complicated. Therefore, it stands to reason that antidifferentiating
products, quotients, and composites of basic functions may be even more challenging. We
defer our study of all but the most elementary antiderivatives to later in the text.

We do note that whenever we know the derivative of a function, we have a function-derivative
pair, so we also know the antiderivative of a function. For instance, since we know that

d .

— [~ cos(x)] = sin(x),

[ cos(x)] = sin(x)

we also know that F(x) = —cos(x) is an antiderivative of f(x) = sin(x). F and f together
form a function-derivative pair. Clearly, every basic derivative rule leads us to such a pair,
and thus to a known antiderivative.

In Activity 4.4.3, we will construct a list of the basic antiderivatives we know at this time.
Those rules will help us antidifferentiate sums and constant multiples of basic functions.
For example, since — cos(x) is an antiderivative of sin(x) and %xg is an antiderivative of x2,
it follows that

F(x) = —=5cos(x) — §x3

is an antiderivative of f(x) = 5sin(x) — 4x2, by the sum and constant multiple rules for
differentiation.
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4.4 The Fundamental Theorem of Calculus

Finally, before proceeding to build a list of common functions whose antiderivatives we
know, we recall that each function has more than one antiderivative. Because the derivative
of any constant is zero, we may add a constant of our choice to any antiderivative. For
instance, we know that G(x) = %x3 is an antiderivative of g(x) = x2. But we could also have
chosen G(x) = %x3 + 7, since in this case as well, G’(x) = x%. If g(x) = x?, we say that the
general antiderivative of g is

1
G(x) = §x3 +C,

where C represents an arbitrary real number constant. Regardless of the formula for g,
including +C in the formula for its antiderivative G results in the most general possible
antiderivative.

Our current interest in antiderivatives is so that we can evaluate definite integrals by the
Fundamental Theorem of Calculus. For that task, the constant C is irrelevant, and we usually
omit it. To see why, consider the definite integral

1
/ x2 dx.
0

For the integrand g(x) = x?, suppose we find and use the general antiderivative G(x) =
1x% + C. Then, by the FTC,

1

! 1
/ x2dx==x3+C
0 3 0

= (%(1)3 + C) -~ (%(0)3 + C)

+C-0-C

Wl W] =

Observe that the C-values appear as opposites in the evaluation of the integral and thus do
not affect the definite integral’s value.

In the following activity, we work to build a list of basic functions whose antiderivatives we
already know.

Activity 4.4.3. Use your knowledge of derivatives of basic functions to complete Ta-
ble 4.4.5 of antiderivatives. For each entry, your task is to find a function F whose
derivative is the given function f. When finished, use the FTC and the results in the
table to evaluate the three given definite integrals.
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given function, f(x) antiderivative, F(x)
k, (k is constant)
x",n+#-1

%, x>0

sin(x)

cos(x)

sec(x) tan(x)
csc(x) cot(x)
sec?(x)

csc?(x)

ex

a* (a>1)

1+x2
1

Vi-x2

Table 4.4.5: Familiar basic functions and their antiderivatives.
1
a. / (x¥ —x —e* +2) dx
0
/3
b. / (2sin(t) — 4 cos(t) + sec®(t) — m) dt
0

1
2
c. ‘/0(\/5 x%)dx

4.4.3 The total change theorem

Let us review three interpretations of the definite integral.

¢ For a moving object with instantaneous velocity v(t), the object’s change in position on

the time interval [a, b] is given by /ﬂb v(t)dt, and whenever v(t) > Oon [a, b], /ﬂb v(t)dt
tells us the total distance traveled by the object on [a, b].

b
¢ For any continuous function f, its definite integral /a f(x) dx represents the net signed
area bounded by y = f(x) and the x-axis on [a, b], where regions that lie below the
x-axis have a minus sign associated with their area.

* The value of a definite integral is linked to the average value of a function: for a con-
tinuous function f on [a, b], its average value faygja ] is given by

1 h
favciap) = b—a/ fx)dx.
a
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4.4 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus now enables us to evaluate exactly (without taking a
limit of Riemann sums) any definite integral for which we are able to find an antiderivative
of the integrand.

A slight change in perspective allows us to gain even more insight into the meaning of the
definite integral. Recall Equation (4.4.2), where we wrote the Fundamental Theorem of Cal-
culus for a velocity function v with antiderivative V as

b
V(b)-V(a)= / o(t)dt.

If we instead replace V with s (which represents position) and replace v with s’ (since ve-
locity is the derivative of position), Equation (4.4.2) then reads as

b
s(b)—s(a):/ s'(t) dt. (4.4.3)

In words, this version of the FTC tells us that the total change in an object’s position function
on a particular interval is given by the definite integral of the position function’s derivative
over that interval.

Of course, this result is not limited to only the setting of position and velocity. Writing the
result in terms of a more general function f, we have the Total Change Theorem.

Total Change Theorem.

If f is a continuously differentiable function on [a, b] with derivative f’, then f(b) —

f(a) = /a ’ f’(x) dx. That is, the definite integral of the rate of change of a function on
[a, b] is the total change of the function itself on [a, b].

The Total Change Theorem tells us more about the relationship between the graph of a func-
tion and that of its derivative. Recall that heights on the graph of the derivative function are
equal to slopes on the graph of the function itself. If instead we know f’ and are seeking
information about f, we can say the following:

differences in heights on f correspond to net signed areas bounded by f’.

To see why this is so, consider the difference f(1) — f(0). This value is 3, because f(1) = 3
and f(0) = 0, but also because the net signed area bounded by y = f’(x) on [0, 1] is 3. That
is,

1
fW -0 = [ e
In addition to this observation about area, the Total Change Theorem enables us to answer

questions about a function whose rate of change we know.

Example 4.4.7 Suppose that pollutants are leaking out of an underground storage tank at a
rate of (t) gallons/day, where ¢ is measured in days. It is conjectured that r(t) is given by the
formula r(t) = 0.0069¢> —0.125¢> +11.079 over a certain 12-day period. The graph of y = r(t)
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X .l (2,4)

Figure 4.4.6: The graphs of f’(x) = 4 — 2x (at left) and an antiderivative f(x) = 4x — x2 at
right. Differences in heights on f correspond to net signed areas bounded by f”.

is given in Figure 4.4.8. What is the meaning of [;0 r(t) dt and what is its value? What is the
average rate at which pollutants are leaving the tank on the time interval 4 < t < 10?

al/da
1o] 88l/day

10t

N A~ O

24 61811012

Figure 4.4.8: The rate r(t) of pollution leaking from a tank, measured in gallons per day.

10
Solution. Since r(t) > 0, the value of A r(t) dt is the area under the curve on the interval
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4.4 The Fundamental Theorem of Calculus

[4,10]. A Riemann sum for this area will have rectangles with heights measured in gallons
per day and widths measured in days, so the area of each rectangle will have units of

gallons

day - days = gallons.

Thus, the definite integral tells us the total number of gallons of pollutant that leak from the
tank from day 4 to day 10. The Total Change Theorem tells us the same thing: if we let R(t)
denote the total number of gallons of pollutant that have leaked from the tank up to day ¢,
then R’(t) = r(t), and

10
/ r(t)dt = R(10) — R(4),
4

the number of gallons that have leaked from day 4 to day 10.

To compute the exact value of the integral, we use the Fundamental Theorem of Calculus.
Antidifferentiating r(t) = 0.0069t> — 0.125¢2 + 11.079, we find that

10

10
/ 0.0069#3 — 0.125¢2 + 11.079 dt = 0.0069 - 411 t+-0.125- %ﬁ +11.079¢
4 4

~ 44.282.

Thus, approximately 44.282 gallons of pollutant leaked over the six day time period.
To find the average rate at which pollutant leaked from the tank over 4 < t < 10, we compute

the average value of r on [4, 10]. Thus,

44.282 — 7380

1 10
T AVG[4,10] = 10—_4/4 r(t)dt ~

gallons per day.

Activity 4.4.4. During a 40-minute workout, a person riding an exercise machine
burns calories at a rate of c calories per minute, where the function y = c(t) is given
in Figure 4.4.9. On the interval 0 < t < 10, the formula for c is c(t) = —0.05¢> +  + 10,
while on 30 < t < 40, its formula is c(t) = —0.05t> + 3t — 30.

a. What is the exact total number of calories the person burns during the first 10
minutes of her workout?

b. Let C(t) be an antiderivative of c(t). What is the meaning of C(40) — C(0) in the
context of the person exercising? Include units on your answer.

c. Determine the exact average rate at which the person burned calories during
the 40-minute workout.

d. At what time(s), if any, is the instantaneous rate at which the person is burning
calories equal to the average rate at which she burns calories, on the time interval
0<t<40?
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T

15-% *C(t)
10
5..

min

10 20 30 40

Figure 4.4.9: The rate c(t) at which a person exercising burns calories, measured in
calories per minute.

4.4.4 Summary

¢ We can find the exact value of a definite integral without taking the limit of a Riemann
sum or using a familiar area formula by finding the antiderivative of the integrand,

and hence applying the Fundamental Theorem of Calculus.

¢ The Fundamental Theorem of Calculus says that if f is a continuous function on [a, b]

and F is an antiderivative of f, then

b
/ f(x)dx = F(b) — F(a).

Hence, if we can find an antiderivative for the integrand f, evaluating the definite

integral comes from simply computing the change in F on [a, b].

¢ A slightly different perspective on the FTC allows us to restate it as the Total Change

Theorem, which says that

b
/ £(x)dx = £(b) - f@),

for any continuously differentiable function f. This means that the definite integral
of the instantaneous rate of change of a function f on an interval [a, b] is equal to the

total change in the function f on [a, b].
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4.4 The Fundamental Theorem of Calculus

4.4.5 Exercises

1. Finding exact displacement. The velocity function is v(t) = —+2 + 4t — 3 for a particle
moving along a line. Find the displacement (net distance covered) of the particle during
the time interval [-1, 5].

4
1
2. Evaluating the definite integral of a rational function. Find the value of / —dx.
2 X
3.  Evaluating the definite integral of a linear function. Evaluate the definite integral
9
/ (4x +10) dx.
2
4.  Evaluating the definite integral of a quadratic function. Evaluate the definite integral &

6
/ (36 — x?) dx.
-6

5. Simplifying an integrand before integrating. Evaluate the definite integral

88x2+3

dx.
3 Vx

6. Evaluating the definite integral of a trigonometric function. Evaluate the definite

integral
/ 8sin(x) dx.
0

7.  The instantaneous velocity (in meters per minute) of a moving object is given by the
function v as pictured in Figure 4.4.10. Assume that on the interval 0 < ¢ < 4, v(t) is
given by v(t) = —1t3+ 22 + 1, and that on every other interval v is piecewise linear, as
shown.

a. Determine the exact distance traveled by the object on the time interval 0 < t < 4.
b. What is the object’s average velocity on [12,24]?
c. At what time is the object’s acceleration greatest?

d. Suppose that the velocity of the object is increased by a constant value c for all val-
ues of t. What value of ¢ will make the object’s total distance traveled on [12, 24]
be 210 meters?
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8.

256

min

4 8 12 16 20 24

Figure 4.4.10: The velocity function of a moving body.

A function f is given piecewise by the formula

—x2+2x+1, if0<x<2
fx)=4{-x+3, if2<x<3.
x2-8x+15, if3<x<5

a. Determine the exact value of the net signed area enclosed by f and the x-axis on
the interval [2, 5].

b. Compute the exact average value of f on [0, 5].

c. Find a formula for a function g on 5 < x < 7 so that if we extend the above
definition of f so that f(x) = g(x) if 5 < x < 7, it follows that f07 f(x)dx =0.

When an aircraft attempts to climb as rapidly as possible, its climb rate (in feet per
minute) decreases as altitude increases, because the air is less dense at higher altitudes.
Given below is a table showing performance data for a certain single engine aircraft,
giving its climb rate at various altitudes, where c(h) denotes the climb rate of the air-
plane at an altitude k.

h (feet) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

c (ft/min) 925 875 830 780 730 685 635 585 535 490 440

Let a new function called m (/) measure the number of minutes required for a plane at
altitude & to climb the next foot of altitude.

a. Determine a similar table of values for m(h) and explain how it is related to the
table above. Be sure to explain the units.

b. Give a careful interpretation of a function whose derivative is m(h). Describe
what the input is and what the output is. Also, explain in plain English what the
function tells us.

c. Determine a definite integral whose value tells us exactly the number of minutes
required for the airplane to ascend to 10,000 feet of altitude. Clearly explain why



10.

11.

4.4 The Fundamental Theorem of Calculus

the value of this integral has the required meaning.

d. Use the Riemann sum M5 to estimate the value of the integral you found in (c).
Include units on your result.

In Chapter 1, we showed that for an object moving along a straight line with position
function s(t), the object’s “average velocity on the interval [a, b]” is given by

More recently in Chapter 4, we found that for an object moving along a straight line
with velocity function v(t), the object’s “average value of its velocity function on [a, b]”
is

1 b
UAVG[a,b] = m/ U(t) dt.
a

Are the “average velocity on the interval [a, b]” and the “average value of the velocity
function on [a, b]” the same thing? Why or why not? Explain.

In Table 4.4.5 in Activity 4.4.3, we noted that for x > 0, the antiderivative of f(x) = %
is F(x) = In(x). Here we observe that a key difference between f(x) and F(x) is that f
is defined for all x # 0, while F is only defined for x > 0, and see how we can actually
define the antiderivative of f for all values of x.

a. Suppose that x < 0, and let G(x) = In(—x). Compute G’(x).
b. Explain why G is an antiderivative of f for x < 0.

c. Let H(x) = In(]x]), and recall that

—-x, ifx<0
|x| = , :
X, ifx>0

Explain why H(x) = G(x) for x < 0 and H(x) = F(x) for x > 0.

d. Now discuss why we say that the antiderivative of % is In(|x|) for all x # 0.
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CHAPTER 5 .

Evaluating Integrals

5.1 Constructing Accurate Graphs of Antiderivatives

Motivating Questions

* Given the graph of a function’s derivative, how can we construct a completely accu-
rate graph of the original function?

* How many antiderivatives does a given function have? What do those antiderivatives
all have in common?

¢ Given a function f, how does the rule A(x) = /Ox f(t)dt define a new function A?

A recurring theme in our discussion of differential calculus has been the question “Given
information about the derivative of an unknown function f, how much information can we
obtain about f itself?” In Activity 1.8.3, the graph of y = f’(x) was known (along with the
value of f at a single point) and we endeavored to sketch a possible graph of f near the
known point. In Example 3.1.7 — we investigated how the first derivative test enables us
to use information about f’ to determine where the original function f is increasing and
decreasing, as well as where f has relative extreme values. If we know a formula or graph
of f/, by computing f” we can find where the original function f is concave up and concave
down. Thus, knowing f” and f” enables us to understand the shape of the graph of f.

We returned to this question in even more detail in Section 4.1. In that setting, we knew
the instantaneous velocity of a moving object and worked to determine as much as possible
about the object’s position function. We found connections between the net signed area
under the velocity function and the corresponding change in position of the function, and
the Total Change Theorem further illuminated these connections between f” and f, showing
that the total change in the value of f over an interval [a, b] is determined by the net signed
area bounded by f’ and the x-axis on the same interval.

In what follows, we explore the situation where we possess an accurate graph of the deriv-
ative function along with a single value of the function f. From that information, we’d like
to determine a graph of f that shows where f is increasing, decreasing, concave up, and
concave down, and also provides an accurate function value at any point.
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260

Preview Activity 5.1.1. Suppose that the following information is known about a
function f: the graph of its derivative, y = f’(x), is given in Figure 5.1.1. Further,
assume that f” is piecewise linear (as pictured) and that forx < 0and x > 6, f'(x) = 0.
Finally, it is given that f(0) = 1.

y=f(x)
3 3
1-/\ 1}
1\ 3 5 1 3 5
1 1
-3 -3

Figure 5.1.1: At left, the graph of y = f’(x); at right, axes for plotting y = f(x).

. On what interval(s) is f an increasing function? On what intervals is f decreas-

ing?

. On what interval(s) is f concave up? concave down?
. At what point(s) does f have a relative minimum? a relative maximum?

. Recall that the Total Change Theorem tells us that

1
F1) - £(0) = /0 F/(x)dx.

What is the exact value of f(1)?

. Use the given information and similar reasoning to that in (d) to determine the

exact value of f(2), f(3), f(4), f(5), and f(6).

. Based on your responses to all of the preceding questions, sketch a complete

and accurate graph of y = f(x) on the axes provided, being sure to indicate the
behavior of f for x < 0and x > 6.
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5.1.1 Constructing the graph of an antiderivative

Preview Activity 5.1.1 demonstrates that when we can find the exact area under the graph
of a function on any given interval, it is possible to construct a graph of the function’s anti-
derivative. That is, we can find a function whose derivative is given. We can now determine
not only the overall shape of the antiderivative graph, but also the actual height of the graph
at any point of interest.

This is a consequence of the Fundamental Theorem of Calculus: if we know a function f
and the value of the antiderivative F at some starting point 4, we can determine the value of
F(b) via the definite integral. Since F(b) — F(a) = fu ’ f(x)dx, it follows that

b
F(b) = F(a) + / F(x)dx. (5.1.1)

We can also interpret the equation F(b) — F(a) = /a ’ f(x)dx in terms of the graphs of f and
F as follows. On an interval [a, b],

differences in heights on the graph of the antiderivative given by F(b) — F(a) correspond
to the net signed area bounded by the original function on the interval [a, b], which is

given by fub f(x)dx.

Activity 5.1.2. Suppose that the function y = f(x) is given by the graph shown in
Figure 5.1.2, and that the pieces of f are either portions of lines or portions of circles.
In addition, let F be an antiderivative of f and say that F(0) = —1. Finally, assume that
forx <0and x >7, f(x) =0.

Figure 5.1.2: At left, the graph of y = f(x).

a. On what interval(s) is F an increasing function? On what intervals is F decreas-
ing?

b. On what interval(s) is F concave up? concave down? neither?
c. At what point(s) does F have a relative minimum? a relative maximum?

d. Use the given information to determine the exact value of F(x) forx =1,2,...,7.
In addition, what are the values of F(-1) and F(8)?
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e. Based on your responses to all of the preceding questions, sketch a complete
and accurate graph of y = F(x) on the axes provided, being sure to indicate the
behavior of F for x < 0 and x > 7. Clearly indicate the scale on the vertical and
horizontal axes of your graph.

f. What happens if we change one key piece of information: in particular, say that
G is an antiderivative of f and G(0) = 0. How (if at all) would your answers to
the preceding questions change? Sketch a graph of G on the same axes as the
graph of F you constructed in (e).

5.1.2 Multiple antiderivatives of a single function

In the final question of Activity 5.1.2, we encountered a very important idea: a function f has
more than one antiderivative. Each antiderivative of f is determined uniquely by its value
at a single point. For example, suppose that f is the function given at left in Figure 5.1.3,
and suppose further that F is an antiderivative of f that satisfies F(0) = 1.

34 4
1..

1 3 5
_1..
_3..

Figure 5.1.3: At left, the graph of y = f(x). Atright, three different antiderivatives of f.

Then, using Equation (5.1.1), we can compute

1
F(1) = F(0) + /0 F(x)dx

=1+0.5

=1.5.
Similarly, F(2) = 1.5, F(3) = —0.5, F(4) = -2, F(5) = —0.5, and F(6) = 1. In addition, we can
use the fact that F’ = f to ascertain where F is increasing and decreasing, concave up and

concave down, and has relative extremes and inflection points. We ultimately find that the
graph of F is the one given in blue in Figure 5.1.3.

If we want an antiderivative G for which G(0) = 3, then G will have the exact same shape
as F (since both share the derivative f), but G will be shifted vertically from the graph of
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F, as pictured in red in Figure 5.1.3. Note that G(1) — G(0) = /01 f(x)dx = 0.5, just as
F(1) — F(0) = 0.5, but since G(0) = 3, G(1) = G(0) + 0.5 = 3.5, whereas F(1) = 1.5. In
the same way, if we assigned a different initial value to the antiderivative, say H(0) = —1, we
would get still another antiderivative, as shown in magenta in Figure 5.1.3.

This example demonstrates an important fact that holds more generally:

If G and H are both antiderivatives of a function f, then the function G — H must be
constant.

To see why this result holds, observe that if G and H are both antiderivatives of f, then
G’ = fand H' = f. Hence,

L [6(x) - H(x)] = 6'(x) = H'() = f(0) = f() = 0.

Since the only way a function can have derivative zero is by being a constant function, it
follows that the function G — H must be constant.

We now see that if a function has at least one antiderivative, it must have infinitely many:
we can add any constant of our choice to the antiderivative and get another antiderivative.
For this reason, we sometimes refer to the general antiderivative of a function f.

To identify a particular antiderivative of f, we must know a single value of the antideriv-
ative F (this value is often called an initial condition). For example, if f(x) = x2, its general
antiderivative is F(x) = %xB + C, where we include the “+C” to indicate that F includes
all of the possible antiderivatives of f. If we know that F(2) = 3, we substitute 2 for x in
F(x) = %x3 + C, and find that

1
3==(2P°+C,
3()+

orC=3- g = % Therefore, the particular antiderivative in this case is F(x) = %x3 + %

Activity 5.1.3. For each of the following functions, sketch an accurate graph of the
antiderivative that satisfies the given initial condition. In addition, sketch the graph
of two additional antiderivatives of the given function, and state the corresponding
initial conditions that each of them satisfy. If possible, find an algebraic formula for
the antiderivative that satisfies the initial condition.

a. original function: g(x) = |x| —1; initial condition: G(-1) = 0; interval for sketch:

[_2/ 2]
b. original function: h(x) = sin(x); initial condition: H(0) = 1; interval for sketch:
[0,4m]
x?, if0<x<1
c. original function: p(x) = { —(x —2)?, if1 < x < 2; initial condition: P(0) = 1;
0 otherwise

interval for sketch: [-1, 3]
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5.1.3 Functions defined by integrals

Equation (5.1.1) allows us to compute the value of the antiderivative F at a point b, provided
that we know F(a) and can evaluate the definite integral from a to b of f. That s,

b
F(b) = F(a) + / f(x)dx.

In several situations, we have used this formula to compute F(b) for several different values
of b, and then plotted the points (b, F(b)) to help us draw an accurate graph of F. This
suggests that we may want to think of b, the upper limit of integration, as a variable itself.
To that end, we introduce the idea of an integral function, a function whose formula involves
a definite integral.

Definition 5.1.4 If f is a continuous function, we define the corresponding integral function
A according to the rule

Alx) = / ' f(t)dt. (5.1.2)

Note that because x is the independent variable in the function A, and determines the end-
point of the interval of integration, we need to use a different variable as the variable of
integration. A standard choice is ¢, but any variable other than x is acceptable.

One way to think of the function A is as the “net signed area from a up to x” function, where
we consider the region bounded by y = f(t). For example, in Figure 5.1.5, we see a function

f pictured at left, and its corresponding area function (choosing a = 0), A(x) = fox f(t)dt
shown at right.

y=f(t)

21

Figure 5.1.5: At left, the graph of the given function f. At right, the area function
X
A(x) = [ f(t) dt.
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The function A measures the net signed area from t = 0 to t = x bounded by the curve
y = f(t); this value is then reported as the corresponding height on the graph of y = A(x). At
http://gvsu.edu/s/cz, we find a java applet! that brings the static picture in Figure 5.1.5 to
life. There, the user can move the red point on the function f and see how the corresponding
height changes at the light blue point on the graph of A.

The choice of a2 is somewhat arbitrary. In the activity that follows, we explore how the value
of a affects the graph of the integral function.

Activity 5.1.4. Suppose that g is given by the graph at left in Figure 5.1.6 and that A
is the corresponding integral function defined by A(x) = /1x g(t)dt.

3 & 3

1-/\ 1
1\ 3 5 1 3 5

-1 -1

-3 -3

Figure 5.1.6: At left, the graph of y = g(t); at right, axes for plotting y = A(x), where
A is defined by the formula A(x) = /1x g(t) dt.

a. On what interval(s) is A an increasing function? On what intervals is A decreas-
ing? Why?

b. On what interval(s) do you think A is concave up? concave down? Why?
c. At what point(s) does A have a relative minimum? a relative maximum?

d. Use the given information to determine the exact values of A(0), A(1), A(2), A(3),
A(4), A(5), and A(6).

e. Based on your responses to all of the preceding questions, sketch a complete
and accurate graph of y = A(x) on the axes provided, being sure to indicate the
behavior of A for x < 0 and x > 6.

f. How does the graph of B compare to A if B is instead defined by B(x) = /Ox g(t)dt?

David Austin, Grand Valley State University
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5.1.4 Summary

* Given the graph of a function f, we can construct the graph of its antiderivative F
provided that (a) we know a starting value of F, say F(a), and (b) we can evaluate the

integral fu ’ f(x)dx exactly for relevant choices of a2 and b. For instance, if we wish to

know F(3), we can compute F(3) = F(a) + /a ’ f(x)dx. When we combine this infor-
mation about the function values of F together with our understanding of how the
behavior of F’ = f affects the overall shape of F, we can develop a completely accurate
graph of the antiderivative F.

¢ Because the derivative of a constant is zero, if F is an antiderivative of f, it follows that
G(x) = F(x) + C will also be an antiderivative of f. Moreover, any two antiderivatives
of a function f differ precisely by a constant. Thus, any function with at least one
antiderivative in fact has infinitely many, and the graphs of any two antiderivatives
will differ only by a vertical translation.

¢ Given a function f, the rule A(x) = fg * f(t)dt defines a new function A that measures
the net-signed area bounded by f on the interval [, x]. We call the function A the
integral function corresponding to f.

5.1.5 Exercises

P-§ 1. Definite integral of a piecewise linear function. Use the graph of f(x) shown below
estere to find the following integrals.

B 0
A. f_ 5 f(x)dx
B. If the vertical red shaded area in the graph

7
has area A, estimate: /_5 fx)dx
(Your estimate may be written in terms of A.)

=3
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2.

4.

5.1 Constructing Accurate Graphs of Antiderivatives

A smooth function that starts out at 0. Consider the graph of the function f(x) shown R

below.

2z

-4

=6

=

WeBWork

A. Estimate the integral
B. If F is an antiderivative of the same function
f and F(0) = 30, estimate F(7).

A piecewise constant function. Assume f’ is given by the graph below. Suppose f is

continuous and that f(3) = 0.

WeBWork

7 Sketch, on a sheet of work paper, an accurate
. —_ graphof f,and useitto find f(0) and f(7. Then
find the value of the integral: fo7 f/(x)dx.
: (Note that you can do this in two different ways!)
Another piecewise linear function. The figure below shows f. &
B WeBWorK
1.8
=3 i 7|

=2

If F/ = f and F(0) =0, find F(b) for b =1, 2, 3,4, 5, 6.
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5. A moving particle has its velocity given by the quadratic function v pictured in Fig-
ure 5.1.7. In addition, it is given that A1 = % and A; = %, as well as that for the corre-
sponding position function s, s(0) = 0.5.

a. Use the given information to determine s(1), s(3), s(5), and s(6).

b. On what interval(s) is s increasing? On what interval(s) is s decreasing?

c. On what interval(s) is s concave up? On what interval(s) is s concave down?
d. Sketch an accurate, labeled graph of s on the axes at right in Figure 5.1.7.

e. Note that v(t) = -2 + %(t — 3)2. Find a formula for s.

3 3ts
1%
o 1..
A t t
1 6 2 4 6
Ay 1+
34 34

Figure 5.1.7: At left, the given graph of v. At right, axes for plotting s.

6. A person exercising on a treadmill experiences different levels of resistance and thus
burns calories at different rates, depending on the treadmill’s setting. In a particu-
lar workout, the rate at which a person is burning calories is given by the piecewise
constant function ¢ pictured in Figure 5.1.8. Note that the units on ¢ are “calories per
minute.”

a. Let C be an antiderivative of c. What does the function C measure? What are its
units?

b. Assume that C(0) = 0. Determine the exact value of C(t) at the values

t =5,10,15, 20,25, 30.

c. Sketch an accurate graph of C on the axes provided at right in Figure 5.1.8. Be
certain to label the scale on the vertical axis.

d. Determine a formula for C that does not involve an integral and is valid for 5 <
t < 10.
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cal/min
154 -
_C
104 -
5-. —
min
10 20 30 10 20 30

Figure 5.1.8: At left, the given graph of c. At right, axes for plotting C.

Consider the piecewise linear function f given in Figure 5.1.9. Let the functions A,
B, and C be defined by the rules A(x) = /_xl f(t)dt, B(x) = fox f(t)dt, and C(x) =

T fmat.

a. For the values x = -1,0,1, ..., 6, make a table that lists corresponding values of

A(X),

B(x), and C(x).

b. On the axes provided in Figure 5.1.9, sketch the graphs of A, B, and C.

c. How are the graphs of A, B, and C related?

d. How would you best describe the relationship between the function A and the
function f?

31 31
— /—f 11
\ t + + + t
N w 5 . 3 5
-34 34

Figure 5.1.9: At left, the given graph of f. At right, axes for plotting A, B, and C.
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5.2 The Second Fundamental Theorem of Calculus

Motivating Questions

¢ How does the integral function A(x) = /1x f(t)dt define an antiderivative of f?
¢ What is the statement of the Second Fundamental Theorem of Calculus?

* How do the First and Second Fundamental Theorems of Calculus enable us to for-
mally see how differentiation and integration are almost inverse processes?

In Section 4.4, we learned the Fundamental Theorem of Calculus (FTC), which from here
forward will be referred to as the First Fundamental Theorem of Calculus, as in this section
we develop a corresponding result that follows it. Recall that the First FTC tells us that if f
is a continuous function on [a, b] and F is any antiderivative of f (thatis, F’ = f), then

b
/ f(x)dx = F(b) — F(a).

We have used this result in two settings:

1 If we have a graph of f and we can compute the exact area bounded by f on an interval
[a, b], we can compute the change in an antiderivative F over the interval.

2 If we can find an algebraic formula for an antiderivative of f, we can evaluate the
integral to find the net signed area bounded by the function on the interval.

For the former, see Preview Activity 5.1.1 or Activity 5.1.2. For the latter, we can easily
evaluate exactly integrals such as
4
/ x2dx,
1

3

since we know that the function F(x) = %x is an antiderivative of f(x) = x2. Thus,

4
/ x2dx = 1x3
1 3

1 1
= 3(4)3 - 5(1)3

=21.

4

1

Thus, the First FTC can used in two ways. First, to find the difference F(b) — F(a) for an anti-
derivative F of the integrand f, even if we may not have a formula for F itself. To do this, we

must know the value of the integral fa ’ f(x)dx exactly, perhaps through known geometric
formulas for area. In addition, the First FTC provides a way to find the exact value of a defi-
nite integral, and hence a certain net signed area exactly, by finding an antiderivative of the
integrand and evaluating its total change over the interval. In this case, we need to know a
formula for the antiderivative F. Both of these perspectives are reflected in Figure 5.2.1.
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5.2 The Second Fundamental Theorem of Calculus

20

10 1

Figure 5.2.1: At left, the graph of f(x) = x? on the interval [1,4] and the area it bounds. At
right, the antiderivative function F(x) = %xg’, whose total change on [1, 4] is the value of the
definite integral at left.

The value of a definite integral may have additional meaning depending on context: as the
change in position when the integrand is a velocity function, the total amount of pollutant
leaked from a tank when the integrand is the rate at which pollution is leaking, or other total
changes if the integrand is a rate function. Also, the value of the definite integral is connected

b
to the average value of a continuous function on a given interval: faycas] = 7 /a fx)dx.
In the last part of Section 5.1, we studied integral functions of the form A(x) = fc ! f(t)dt.
Figure 5.1.5 is a particularly important image to keep in mind as we work with integral

functions, and the corresponding java applet at gvsu.edu/s/cz can help us understand the
function A. In what follows, we use the First FTC to gain additional understanding of the

function A(x) = /C " f(t) dt, where the integrand f is given (either through a graph or a
formula), and c is a constant.

Preview Activity 5.2.1. Consider the function A defined by the rule

A= [ s
1
where f(t) =4 - 2t.
a. Compute A(1) and A(2) exactly.

b. Use the First Fundamental Theorem of Calculus to find a formul%c for A(x) that
does not involve integrals. That is, use the first FTC to evaluate /1 (4 —2t)dt.

c. Observe that f is a linear function; what kind of function is A?
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d. Using the formula you found in (b) that does not involve integrals, compute
A’(x).

e. While we have defined f by the rule f(t) = 4 — 2¢, it is equivalent to say that f
is given by the rule f(x) = 4 — 2x. What do you observe about the relationship
between A and f?

5.2.1 The Second Fundamental Theorem of Calculus

The result of Preview Activity 5.2.1 is not particular to the function f(¢) = 4 — 2¢, nor to the
choice of “1” as the lower bound in the integral that defines the function A. For instance, if
we let f(t) = cos(t) — t and set A(x) = f; f(t)dt, we can determine a formula for A by the
First FTC. Specifically,

A(x) = /x(cos(t) —t)dt
2
= sin(t) — %tz )

2
= sin(x) — %xz — (sin(2) = 2).

Differentiating A(x), since (sin(2) — 2) is constant, it follows that
A’(x) = cos(x) — x,

and thus we see that A’(x) = f(x), so A is an antiderivative of f. And since

2
mm:lfmm=a

A is the only antiderivative of f for which A(2) = 0.

In general, if f is any continuous function, and we define the function A by the rule

Alx) = / fydt,

where ¢ is an arbitrary constant, then we can show that A is an antiderivative of f. To see
why, let’s demonstrate that A’(x) = f(x) by using the limit definition of the derivative. Doing
so, we observe that

A(x+h)—A(x)
h

1 [ pwyae - [Fpyar
=D h

h—0 h

A'(x) = lim

(5.2.1)
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5.2 The Second Fundamental Theorem of Calculus

where Equation (5.2.1) follows from the fact that /Cx f()dt + fXHh f(t)ydt = /Cﬁh f(t)dt.
Now, observe that for small values of #,

x+h
/ F(dt ~ £,

by a simple left-hand approximation of the integral. Thus, as we take the limit in Equa-
tion (5.2.1), it follows that

x+h
(£)dt -k

A(x) =1
() = Jiry
Hence, A is indeed an antiderivative of f. In addition, A(c) = fc ‘ f(t)dt = 0. The preceding

argument demonstrates the truth of the Second Fundamental Theorem of Calculus, which
we state as follows.

~ The Second Fundamental Theorem of Calculus.

If f is a continuous function and c is any constant, then f has a unique antiderivative
A that satisfies A(c) = 0, and that antiderivative is given by the rule A(x) = /C ! f(t)dt.
\.

Activity 5.2.2. Suppose that f is the function given in Figure 5.2.2 and that f is a
piecewise function whose parts are either portions of lines or portions of circles, as
pictured.

Figure 5.2.2: At left, the graph of y = f(x). Atright, axes for sketching y = A(x).

In addition, let A be the function defined by the rule A(x) = /2x f(t)dt.

a. What does the Second FTC tell us about the relationship between A and f?
b. Compute A(1) and A(3) exactly.

c. Sketch a precise graph of y = A(x) on the axes at right that accurately reflects
where A is increasing and decreasing, where A is concave up and concave down,
and the exact valuesof Aatx =0,1,...,7.

d. How is A similar to, but different from, the function F that you found in Activ-
ity 5.1.2?
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e. With as little additional work as possible, sketch precise graphs of the functions

B(x) = /; f(t)dt and C(x) = /1x f(t)dt. Justify your results with at least one
sentence of explanation.

5.2.2 Understanding Integral Functions

The Second FTC provides us with a way to construct an antiderivative of any continuous
function. In particular, if we are given a continuous function g and wish to find an anti-
derivative of G, we can now say that

G(x)z/ g(t)dt

provides the rule for such an antiderivative, and moreover that G(c) = 0. Note especially
that we know that G’(x) = g(x), or

% [/C g(t)dt} = g(x). (5.2.2)

This result is useful for understanding the graph of G.

Example 5.2.3 Investigate the behavior of the integral function

E(x)z/ e dt.
0

Solution. E is closely related to the well known error function ! in probability and statistics.
It turns out that the function e~** does not have an elementary antiderivative.

While we cannot evaluate E exactly for any value other than x = 0, we still can gain a tremen-
dous amount of information about the function E. By applying the rule in Equation (5.2.2)

to E, it follows that
, d * 2 X2
E(x)—%[/oe dt}—e ,

so we know a formula for the derivative of E, and we know that E(0) = 0. This information
is precisely the type we were given in Activity 3.1.2, where we were given information about
the derivative of a function, but lacked a formula for the function itself.

Using the first and second derivatives of E, along with the fact that E(0) = 0, we can de-
termine more information about the behavior of E. First, we note that for all real numbers
x, e™ > 0, and thus E’(x) > 0 for all x. Thus E is an always increasing function. Further,
as x — oo, E'(x) = e = 0, so the slope of the function E tends to zero as x — oo (and
similarly as x — —o0). Indeed, it turns out that E has horizontal asymptotes as x increases
or decreases without bound.

In addition, we can observe that E”(x) = —2xe™, and that E”(0) = 0, while E”(x) < 0 for
x > 0and E”(x) > 0 for x < 0. This information tells us that E is concave up for x < 0 and
concave down for x > 0 with a point of inflection at x = 0.
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5.2 The Second Fundamental Theorem of Calculus

The only thing we lack at this point is a sense of how big E can get as x increases. If we use
a midpoint Riemann sum with 10 subintervals to estimate E(2), we see that E(2) ~ 0.8822; a
similar calculation to estimate E(3) shows little change (E(3) ~ 0.8862), so it appears that as
x increases without bound, E approaches a value just larger than 0.886, which aligns with
the fact that E has horizontal asymptotes. Putting all of this information together (and using

the symmetry of f(t) = e~1"), we see the results shown in Figure 5.2.4.

(1) =e" EC) = Jserdi

Figure 5.2.4: At left, the graph of f(t) = e, At right, the integral function
E(x)= fox e~t* dt, which is the unique antiderivative of f that satisfies E(0) = 0.

Because E is the antiderivative of f(t) = ¢ that satisfies E(0) = 0, values on the graph of

y = E(x) represent the net signed area of the region bounded by f(t) = e~** from 0 up to x.
We see that the value of E increases rapidly near zero but then levels off as x increases, since

there is less and less additional accumulated area bounded by f(t) = e~ as x increases.

Activity 5.2.3. Suppose that f(t) = -7 and F(x) = fox f(t)dt.

a. On the axes at left in Figure 5.2.5, plot a graph of f(t) = tZ on the interval
—10 < t < 10. Clearly label the vertical axes with appropriate scale.

b. What is the key relationship between F and f, according to the Second FTC?

c. Use the first derivative test to determine the intervals on which F is increasing
and decreasing.

d. Use the second derivative test to determine the intervals on which F is concave
up and concave down. Note that f’(f) can be simplified to be written in the form

IThe error function is defined by the rule erf(x) = \/LE fox e~ dt and has the key property that 0 < erf(x) < 1

for all x > 0 and moreover that limy_,« erf(x) = 1.
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)
fr(t) = (11+—ttz)z

e. Using technology appropriately, estimate the values of F(5) and F(10) through
appropriate Riemann sums.

f. Sketch an accurate graph of y = F(x) on the righthand axes provided, and
clearly label the vertical axes with appropriate scale.

Figure 5.2.5: Axes for plotting f and F.

5.2.3 Differentiating an Integral Function

We have seen that the Second FTC enables us to construct an antiderivative F for any con-
tinuous function f as the integral function F(x) = fc g f(t)dt. If we have a function of the

form F(x) = fcx f(t)dt, then we know that F'(x) = % [/Cx f(t)dt] = f(x). This shows that

integral functions, while perhaps having the most complicated formulas of any functions
we have encountered, are nonetheless particularly simple to differentiate. For instance, if

F(x) = /X sin(t?) dt,

then by the Second FTC, we know immedjiately that

F’(x) = sin(x?).

In general, we know by the Second FTC that

2 [ / Xf(t)dt] - ).
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This equation says that “the derivative of the integral function whose integrand is f,is f.”
We see that if we first integrate the function f from t = a to t = x, and then differentiate
with respect to x, these two processes “undo” each other.

What happens if we differentiate a function f(¢) and then integrate the result from ¢t = a to
t = x? That is, what can we say about the quantity

/ﬂx% [f(t)] dt?

We note that f(t) is an antiderivative of % [ f (t)] and apply the First FTC. We see that

| gl a = sof
- )~ fl@)

Thus, we see that if we first differentiate f and then integrate the result from a to x, we
return to the function f, minus the constant value f(a). So the two processes almost undo
each other, up to the constant f(a).

The observations made in the preceding two paragraphs demonstrate that differentiating
and integrating (where we integrate from a constant up to a variable) are almost inverse
processes. This should not be surprising: integrating involves antidifferentiating, which re-
verses the process of differentiating. On the other hand, we see that there is some subtlety
involved, because integrating the derivative of a function does not quite produce the func-
tion itself. This is because every function has an entire family of antiderivatives, and any
two of those antiderivatives differ only by a constant.

Activity 5.2.4. Evaluate each of the following derivatives and definite integrals. Clearly
cite whether you use the First or Second FIC in so doing.

a A [ [ e dt] d. [ 4 [In(1+?)] at
3
b 54 [%] it e 4 [[;‘ sin(tz)dt].

c. % [/: cos(t3) dt]

5.2.4 Summary

e For a continuous function f, the integral function A(x) = /1x f(t)dt defines an anti-
derivative of f.

¢ The Second Fundamental Theorem of Calculus is the formal, more general statement
of the preceding fact: if f is a continuous function and c is any constant, then A(x) =

/C * f(t)dt is the unique antiderivative of f that satisfies A(c) = 0.
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¢ Together, the First and Second FTC enable us to formally see how differentiation and
integration are almost inverse processes through the observations that

[ 3 o] de= 50 - s

and

| [ srae| = 00

5.2.5 Exercises

1. A definite integral starting at 3. Let g(x) = fox f(t)dt, where f(t) is given in the figure
Hestork below.

p Find each of the following;:

A. g(0)

B.g/(1)

C. The interval (with endpoints given to
the nearest 0.25) where g is concave up:
D. The value of x where g takes its max-
imum on the interval 0 < x < 8.

= 158 8

L =2

N
WeBWork

a
2. Variable in the lower limit. Find the derivative: % / In(In(t)) dt.
X

3. Approximating a function with derivative e™/5, Find a good numerical approxima-
tion to F(4) for the function with the properties that F'(x) = e*/5and F (0) = 3.

WeBWork

4. Let g be the function pictured at left in Figure 5.2.6, and let F be defined by F(x) =

/Zx g(t) dt. Assume that the shaded areas have values A1 = 4.29, A, = 12.75, A3 = 0.36,
and Az = 1.79. Assume further that the portion of A, that lies between x = 0.5 and
x = 2is6.06.

Sketch a carefully labeled graph of F on the axes provided, and include a written analy-
sis of how you know where F is zero, increasing, decreasing, CCU, and CCD.
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6} 15}
4 10
=gt
A 8(1)
21 5
Ay
A 1é'é'4\<5'é 1 1 2 3 4 5 6
-5
A3
-10+

Figure 5.2.6: At left, the graph of g. At right, axes for plotting F.

The tide removes sand from the beach at a small ocean park at a rate modeled by the
function

. [(4mt
R(t) =2+ 5sin (E)

A pumping station adds sand to the beach at rate modeled by the function

15t

5 = 1735

Both R(t) and S(t) are measured in cubic yards of sand per hour, t is measured in hours,
and the valid times are 0 < f < 6. At time ¢ = 0, the beach holds 2500 cubic yards of
sand.

a. What definite integral measures how much sand the tide will remove during the
time period 0 < t < 6? Why?

b. Write an expression for Y(x), the total number of cubic yards of sand on the beach
at time x. Carefully explain your thinking and reasoning.

c. Atwhat instantaneous rate is the total number of cubic yards of sand on the beach
at time t = 4 changing?

d. Over the timeinterval 0 < t < 6, at what time t is the amount of sand on the beach
least? What is this minimum value? Explain and justify your answers fully.

When an aircraft attempts to climb as rapidly as possible, its climb rate (in feet per
minute) decreases as altitude increases, because the air is less dense at higher altitudes.
Given below is a table showing performance data for a certain single engine aircraft,
giving its climb rate at various altitudes, where c(h) denotes the climb rate of the air-
plane at an altitude k.
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280

h (feet) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

c (ft/min) 925 875 830 780 730 685 635 585 535 490 440

Table 5.2.7: Data for the climbing aircraft.

Let a new function m, that also depends on #, (say y = m(h)) measure the number of
minutes required for a plane at altitude / to climb the next foot of altitude.

. Determine a similar table of values for m(h) and explain how it is related to the

table above. Be sure to discuss the units on m.

. Give a careful interpretation of a function whose derivative is m(h). Describe

what the input is and what the output is. Also, explain in plain English what the
function tells us.

. Determine a definite integral whose value tells us exactly the number of minutes

required for the airplane to ascend to 10,000 feet of altitude. Clearly explain why
the value of this integral has the required meaning.

. Determine a formula for a function M(h) whose value tells us the exact number

of minutes required for the airplane to ascend to & feet of altitude.

. Estimate the values of M(6000) and M(10000) as accurately as you can. Include

units on your results.
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5.3 Integration by Substitution

Motivating Questions

¢ How can we begin to find algebraic formulas for antiderivatives of more complicated
algebraic functions?

¢ What is an indefinite integral and how is its notation used in discussing antideriva-
tives?

¢ How does the technique of u-substitution work to help us evaluate certain indefinite
integrals, and how does this process rely on identifying function-derivative pairs?

In Section 4.4, we learned the key role that antiderivatives play in the process of evaluating
definite integrals exactly. The Fundamental Theorem of Calculus tells us that if F is any
antiderivative of f, then

b
/ f(x)dx = F(b) — F(a).

Furthermore, we realized that each elementary derivative rule developed in Chapter 2 leads
to a corresponding elementary antiderivative, as summarized in Table 4.4.5. Thus, if we
wish to evaluate an integral such as

1
‘/0 (x3 - \/§+5x) dx,

itis straightforward to do so, since we can eas1ly antidifferentiate f(x) = x3—+/x+5*. Because
one antiderivative of f is F(x) = jx* - 3x%2+ 1= (5) —=5%, the Fundamental Theorem of Calculus
tells us that

1

1
/ (x3 - \/§+5") dx = 1x4 - gJc?’/Z + L5"
0 0

¥ 73 In(5)
_(Xa 20 1 1
‘(4(1)4 307+ 0GP ) (0 0+1(5)50)
5 4

12 nG)

We see that we have a natural interest in being able to find such algebraic antiderivatives. We
emphasize algebraic antiderivatives, as opposed to any antiderivative, since we know by the
Second Fundamental Theorem of Calculus that G(x) = fu * f(t)dt isindeed an antiderivative
of the given function f, but one that still involves a definite integral. Our goal in this section
is to “undo” the process of differentiation to find an algebraic antiderivative for a given
function.
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Preview Activity 5.3.1. In Section 2.5, we learned the Chain Rule and how it can be
applied to find the derivative of a composite function. In particular, if u is a differen-
tiable function of x, and f is a differentiable function of u(x), then

2 fu)] = Fut) ).

In words, we say that the derivative of a composite function c(x) = f(u(x)), where
f is considered the “outer” function and u the “inner” function, is “the derivative of
the outer function, evaluated at the inner function, times the derivative of the inner
function.”

a. For each of the following functions, use the Chain Rule to find the function’s
derivative. Be sure to label each derivative by name (e.g., the derivative of g(x)
should be labeled g’(x)).

i. g(x)=e* iv. q(x) = (2 -7x)*
ii. h(x) =sin(5x + 1)
iii. p(x) = arctan(2x) v. r(x) =3+ 1x

b. For each of the following functions, use your work in (a) to help you determine
the general antiderivative! of the function. Label each antiderivative by name
(e.g., the antiderivative of m should be called M). In addition, check your work
by computing the derivative of each proposed antiderivative.

i. m(x)=e3 iv. v(x) = (2-"7x)°
ii. n(x) = cos(bx +1)
iii. s(x) = = v. w(x) =34 11x

c. Based on your experience in parts (a) and (b), conjecture an antiderivative for
each of the following functions. Test your conjectures by computing the deriv-
ative of each proposed antiderivative.

i. a(x) = cos(mx) iii. ¢(x) = xe¥
ii. b(x) = (4x + 7)1

5.3.1 Reversing the Chain Rule: First Steps

Whenever f is a familiar function whose antiderivative is known and u(x) is a linear func-
tion, it is straightforward to antidifferentiate a function of the form

h(x) = f(u(x)).

1Recall that the general antiderivative of a function includes “+C” to reflect the entire family of functions that
share the same derivative.
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Example 5.3.1 Determine the general antiderivative of
h(x) = (5x — 3)°.

Check the result by differentiating.

For this composite function, the outer function f is f(u) = u®, while the inner function is
u(x) = 5x — 3. Since the antiderivative of f is F(u) = %u7 + C, we see that the antiderivative
of his

Ll selay i os Lsyay
H(x)—7(5x 3) 5+C—35(5x 3) +C.

The inclusion of the constant 1 is essential precisely because the derivative of the inner func-
tionis u’(x) = 5. Indeed, if we now compute H’(x), we find by the Chain Rule (and Constant
Multiple Rule) that

H'(x) = % -7(5x —3)°-5 = (5x — 3)° = h(x),

and thus H is indeed the general antiderivative of h.

Hence, in the special case where the outer function is familiar and the inner function is linear,
we can antidifferentiate composite functions according to the following rule.

If h(x) = f(ax + b) and F is a known algebraic antiderivative of f, then the general
antiderivative of & is given by

H(x) = %F(ax +b)+C.

It is useful to have shorthand notation that indicates the instruction to find an antiderivative.
Thus, in a similar way to how the notation

2 )

represents the derivative of f(x) with respect to x, we use the notation of the indefinite inte-

gral,
[ s

to represent the general antiderivative of f with respect to x. Returning to the earlier exam-
ple with h(x) = (5x — 3)®, we can rephrase the relationship between / and its antiderivative
H through the notation

1
— 6 = — — 7
/(Sx 3)° dx 35(Sx 6)" + C.

When we find an antiderivative, we will often say that we evaluate an indefinite integral. Just
as the notation dd—x [O] means “find the derivative with respect to x of O,” the notation / Odx
means “find a function of x whose derivative is O0.”
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Chapter 5 Evaluating Integrals

Activity 5.3.2. Evaluate each of the following indefinite integrals. Check each anti-
derivative that you find by differentiating.

a. f sin(8 — 3x) dx d. f csc(2x + 1) cot(x + 1) dx

b. [sec?(4x)dx e. [ \/1_11? dx

o [tigdx f. [5%dx

5.3.2 Reversing the Chain Rule: u-substitution

A natural question arises from our recent work: what happens when the inner function is
not linear? For example, can we find antiderivatives of such functions as

g(x) = xe* and h(x) = e*’?

It is important to remember that differentiation and antidifferentiation are almost inverse
processes (that they are not is due to the +C that arises when antidifferentiating). This
almost-inverse relationship enables us to take any known derivative rule and rewrite it as a
corresponding rule for an indefinite integral. For example, since

51 _ 5od
I [x ] = 5x*,
we can equivalently write

/5x4dx =x’+C.
Recall that the Chain Rule states that
d ’ ’
o [Fe)] = F(g() - g/ (x).
Restating this relationship in terms of an indefinite integral,

[ Fatr e = ot +c. 53.1)

Equation (5.3.1) tells us that if we can view a given function as f’(g(x))g’(x) for some appro-
priate choices of f and g, then we can antidifferentiate the function by reversing the Chain
Rule. Note that both g(x) and g’(x) appear in the form of f’(g(x))g’(x); we will sometimes
say that we seek to identify a function-derivative pair (g(x) and g’(x)) when trying to apply the
rule in Equation (5.3.1).

If we can identify a function-derivative pair, we will introduce a new variable u to represent
the function g(x). With u = g(x), it follows in Leibniz notation that Z—z = g’(x), so that in
terms of differentials?, du = g’(x) dx. Now converting the indefinite integral to a new one in

2If we recall from the definition of the derivative that % ~ % and use the fact that g—z = ¢’(x), then we see that

g'(x) = %. Solving for Au, Au ~ g’(x)Ax. Itis this last relationship that, when expressed in “differential” notation

enables us to write du = g’(x) dx in the change of variable formula.
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5.3 Integration by Substitution

terms of u, we have

[romswax= [ rua.

Provided that f’ is an elementary function whose antiderivative is known, we can easily
evaluate the indefinite integral in #, and then go on to determine the desired overall anti-
derivative of f'(g(x))g’(x). We call this process u-substitution, and summarize the rule as
follows:

With the substitution u = g(x),

/ Fg0)g’ () dx = / Fu)du = Fu) + C = f(g(x) + C.

To see u-substitution at work, we consider the following example.

Example 5.3.2 Evaluate the indefinite integral
/ x% - sin(7x* + 3) dx

and check the result by differentiating.

Solution. We can make two algebraic observations regarding the integrand, x3-sin(7x*+3).
First, sin(7x* + 3) is a composite function; as such, we know we’'ll need a more sophisticated
approach to antidifferentiating. Second, x> is almost the derivative of (7x* + 3); the only
issue is a missing constant. Thus, x3 and (7x* + 3) are nearly a function-derivative pair.
Furthermore, we know the antiderivative of f(u) = sin(u). The combination of these ob-
servations suggests that we can evaluate the given indefinite integral by reversing the chain
rule through u-substitution.

Letting u represent the inner function of the composite function sin(7x* + 3), we have u =
7x* + 3, and thus Z—Z = 28x3. In differential notation, it follows that du = 28x> dx, and thus
x3dx = 55 du. The original indefinite integral may be slightly rewritten as

/sin(7x4 +3)-x3dx,
and so by substituting u for 7x* + 3 and 55 du for x> dx, it follows that

/sin(7x4 +3)-x3dx = /sin(u) . % du.

Now we may evaluate the easier integral in u, and then replace u by the expression 7x* + 3.
Doing so, we find

/sin(7x4 +3)-x3dx = /sin(u) . % du

1 )
= %/sm(u)du
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1
= ﬁ(_ cos(u))+ C

1 4
=~ cos(7x* +3) + C.
To check our work, we observe by the Chain Rule that

d 1 4
- [—— cos(7x* + 3)

55 = —21—8 - (-1)sin(7x* + 3) - 28x% = sin(7x* + 3) - x5,

which is indeed the original integrand.

The u-substitution worked because the function multiplying sin(7x* + 3) was x3. If instead
that function was x2 or x*, the substitution process would not have worked. This is one of the
primary challenges of antidifferentiation: slight changes in the integrand make tremendous
differences. For instance, we can use #-substitution with # = x2 and du = 2xdx to find that

/xexzdx=/e”-%du

However, for the similar indefinite integral

/e"z dx,

the u-substitution # = x*~ is no longer possible because the factor of x is missing. Hence,
part of the lesson of u-substitution is just how specialized the process is: it only applies to
situations where, up to a missing constant, the integrand is the result of applying the Chain
Rule to a different, related function.

2

Activity 5.3.3. Evaluate each of the following indefinite integrals by using these steps:

¢ Find two functions within the integrand that form (up to a possible missing
constant) a function-derivative pair;

* Make a substitution and convert the integral to one involving u and du;
¢ Evaluate the new integral in u;

¢ Convert the resulting function of u back to a function of x by using your earlier
substitution;

¢ Check your work by differentiating the function of x. You should come up with
the integrand originally given.
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5.3 Integration by Substitution

a. [ s dx e [ dx
b. fe" sin(e*) dx

5.3.3 Evaluating Definite Integrals via u-substitution

We have introduced u-substitution as a means to evaluate indefinite integrals of functions
that can be written, up to a constant multiple, in the form f(g(x))g’(x). This same technique
can be used to evaluate definite integrals involving such functions, though we need to be
careful with the corresponding limits of integration. Consider, for instance, the definite

integral
> 2
/ xe™ dx.
2

Whenever we write a definite integral, it is implicit that the limits of integration correspond
to the variable of integration. To be more explicit, observe that

5 ) x=5 )
/ xe™ dx :/ xe™ dx.
2 x=2

When we execute a u-substitution, we change the variable of integration; it is essential to note
that this also changes the limits of integration. For instance, with the substitution u = x? and
du = 2x dx, it also follows that when x = 2, u = 22 = 4, and when x = 5, u = 5% = 25. Thus,
under the change of variables of u-substitution, we now have

x=5 ) u=25 1
/ xe® dx=/ e - =du
x=2 u=4 2

=25
— 1 u !
2 u=4
1 1
= 5625 - 564.

Alternatively, we could consider the related indefinite integral / xe* dx, find the antideriv-

ative %exz through u-substitution, and then evaluate the original definite integral. With that
method, we’d have

which is, of course, the same result.
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Activity 5.3.4. Evaluate each of the following definite integrals exactly through an
appropriate u-substitution.

a. dx /4/71 cos( )d

x
1 1+4x2

b. /01 e ¥(2e™* +3) dx

5.3.4 Summary

¢ To find algebraic formulas for antiderivatives of more complicated algebraic functions,
we need to think carefully about how we can reverse known differentiation rules. To
that end, it is essential that we understand and recall known derivatives of basic func-
tions, as well as the standard derivative rules.

¢ Theindefinite integral provides notation for antiderivatives. When we write “ f f(x)dx,”
we mean “the general antiderivative of f.” In particular, if we have functions f and F
such that F’ = f, the following two statements say the exact thing:

%[F(x)] = f(x) and /f(x)dx =F(x)+C.

That is, f is the derivative of F, and F is an antiderivative of f.

¢ The technique of u-substitution helps us to evaluate indefinite integrals of the form
/ f(g(x))g’(x) dx through the substitutions u = g(x) and du = g’(x) dx, so that

[ sonsex= [

A key part of choosing the expression in x to be represented by u is the identification of
a function-derivative pair. To do so, we often look for an “inner” function g(x) that is
part of a composite function, while investigating whether g’(x) (or a constant multiple
of g’(x)) is present as a multiplying factor of the integrand.

5.3.5 Exercises

0§ 1. Product involving 4th power of a polynomial. Find the following integral.

/ B (14— 4)” dt.

¥<§ 2. Productinvolving sin(x®). Find the the general antiderivative F(x) of the function f(x)

WeBWOrK given below.
f(x) = 72 sin(x°).

<4 3. Fraction involving In’. Find the following integral.

8
/ln(z)d
zZ
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4. Fraction involving ¢°*. Find the following integral.

5x
/ ¢ dx
1+ e5

5.  Fraction involving e>V¥. Find the following integral.

2e4VY
dy
VY

5.3 Integration by Substitution

p)

|
&
WeBWorkK

ot |
WeBWork

6. Definite integral involving ¢ °°*?), Use the Fundamental Theorem of Calculus to find

/ ) - cos(y) dg
/2

WeBWork

7.  This problem centers on finding antiderivatives for the basic trigonometric functions

other than sin(x) and cos(x).

a. Consider the indefinite integral f tan(x) dx. By rewriting the integrand as

tan(x) =

sin(x)
cos(x)

and identifying an appropriate function-derivative pair, make a u-substitution

and hence evaluate [ tan(x) dx.

b. In a similar way, evaluate / cot(x) dx.

c. Consider the indefinite integral

/ sec?(x) + sec(x) tan(x) gx

sec(x) + tan(x)

Evaluate this integral using the substitution # = sec(x) + tan(x).

d. Simplify the integrand in (c) by factoring the numerator. What is a far simpler

way to write the integrand?

e. Combine your work in (c) and (d) to determine f sec(x) dx.

f. Using (c)-(e) as a guide, evaluate f csc(x) dx.

8.  Consider the indefinite integral f xVx —1dx.

a. Atfirst glance, this integrand may not seem suited to substitution due to the pres-
ence of x in separate locations in the integrand. Nonetheless, using the composite

function Vx —1 as a guide, let u = x — 1. Determine expressions for both x and

dx in terms of u.

b. Convert the given integral in x to a new integral in u.

c. Evaluate the integral in (b) by noting that v/ = u'/2 and observing that it is now
possible to rewrite the integrand in u by expanding through multiplication.
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9.

10.

d.

Evaluate each of the integrals f x>VYx — 1dx and / xVx? —1dx. Write a para-
graph to discuss the similarities among the three indefinite integrals in this prob-
lem and the role of substitution and algebraic rearrangement in each.

Consider the indefinite integral f sin3(x) dx.

a.

d.

e.

Explain why the substitution u = sin(x) will not work to help evaluate the given
integral.

Recall the Fundamental Trigonometric Identity, which states that
sin?(x) + cos?(x) = 1.

By observing that sin(x) = sin(x) - sin?(x), use the Fundamental Trigonometric
Identity to rewrite the integrand as the product of sin(x) with another function.

Explain why the substitution u = cos(x) now provides a possible way to evaluate
the integral in (b).

Use your work in (a)-(c) to evaluate the indefinite integral / sin3(x) dx.

Use a similar approach to evaluate / cos®(x) dx.

For the town of Mathland, MI, residential power consumption has shown certain trends
over recent years. Based on data reflecting average usage, engineers at the power com-
pany have modeled the town’s rate of energy consumption by the function

r(t) = 4 + sin(0.263t + 4.7) + cos(0.526t + 9.4).

Here, t measures time in hours after midnight on a typical weekday, and r is the rate
of consumption in megawatts?® at time . Units are critical throughout this problem.

. Sketch a carefully labeled graph of r(t) on the interval [0,24] and explain its mean-

ing. Why is this a reasonable model of power consumption?

24
Without calculating its value, explain the meaning of /0 r(t)dt. Include appro-
priate units on your answer.

Determine the exact amount of energy Mathland consumes in a typical day.

What is Mathland’s average rate of power consumption in a given 24-hour period?
What are the units on this quantity?

3The unit megawatt is itself a rate, which measures energy consumption per unit time. A megawatt-hour is the
total amount of energy that is equivalent to a constant stream of 1 megawatt of power being sustained for 1 hour.
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5.4 Integration by Parts

5.4 Integration by Parts

Motivating Questions

* How do we evaluate indefinite integrals that involve products of basic functions such
as f x sin(x) dx and / xe* dx?

* What is the method of integration by parts and how can we consistently apply it to
integrate products of basic functions?

* How does the algebraic structure of functions guide us in identifying u and dv in
using integration by parts?

In Section 5.3, we learned the technique of u-substitution for evaluating indefinite integrals.
For example, the indefinite integral | x> sin(x*) dx is perfectly suited to u-substitution, be-
cause one factor is a composite function and the other factor is the derivative (up to a con-
stant) of the inner function. Recognizing the algebraic structure of a function can help us to
find its antiderivative.

Next we consider integrands with a different elementary algebraic structure: a product of
basic functions. For instance, suppose we are interested in evaluating the indefinite integral

/ x sin(x) dx.

The integrand is the product of the basic functions f(x) = x and g(x) = sin(x). We know
that it is relatively complicated to compute the derivative of the product of two functions, so
we should expect that antidifferentiating a product should be similarly involved. Intuitively,
we expect that evaluating f x sin(x) dx will involve somehow reversing the Product Rule.

To that end, in Preview Activity 5.4.1 we refresh our understanding of the Product Rule and
then investigate some indefinite integrals that involve products of basic functions.

Preview Activity 5.4.1. In Section 2.3, we developed the Product Rule and studied
how it is employed to differentiate a product of two functions. In particular, recall
that if f and g are differentiable functions of x, then

2 [f0)- 9] = £) - 9'0) + 90) - £

a. For each of the following functions, use the Product Rule to find the function’s
derivative. Be sure to label each derivative by name (e.g., the derivative of g(x)
should be labeled g’(x)).

i. g(x) = xsin(x) iv. g(x) = x? cos(x)
ii. h(x) = xe*
iii. p(x) = xIn(x) v. r(x) = e* sin(x)
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b. Use your work in (a) to help you evaluate the following indefinite integrals. Use
differentiation to check your work.

i /xex +e*dx iv. fxcos(x) + sin(x) dx
ii. f e*(sin(x) + cos(x)) dx
iii. [ 2xcos(x) — x%sin(x) dx v. [1+In(x)dx

c. Observe that the examples in (b) work nicely because of the derivatives you
were asked to calculate in (a). Each integrand in (b) is precisely the result of
differentiating one of the products of basic functions found in (a). To see what
happens when an integrand is still a product but not necessarily the result of
differentiating an elementary product, we consider how to evaluate

/x cos(x) dx.

% [x sin(x)] = x cos(x) + sin(x).

i. First, observe that

Integrating both sides indefinitely and using the fact that the integral of a
sum is the sum of the integrals, we find that

/(%[xsin(X)]) dxz‘/xcos(x)dx+‘/sin(x)dx.

In this last equation, evaluate the indefinite integral on the left side as well
as the rightmost indefinite integral on the right.

ii. In the most recent equation from (i.), solve the equation for the expression
f x cos(x) dx.

iii. For which product of basic functions have you now found the antideriva-
tive?

5.4.1 Reversing the Product Rule: Integration by Parts

Problem (c) in Preview Activity 5.4.1 provides a clue to the general technique known as
Integration by Parts, which comes from reversing the Product Rule. Recall that the Product

Rule states that

2 [Fg)] = f25' () + g0 f ().

Integrating both sides of this equation indefinitely with respect to x, we find

/:_x [f(x)g(x)] dx:/f(x)g’(x)dx+/g(x)f’(x)dx. (5.4.1)
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On the left side of Equation (5.4.1), we have the indefinite integral of the derivative of a
function. Temporarily omitting the constant that may arise, we have

fwae = [ f@g@ans [ o0f @ 6:42)
We solve for the first indefinite integral on the left to generate the rule

[ @@= fwgw - [ or @ (543)

Often we express Equation (5.4.3) in terms of the variables u and v, where u = f(x) and
v = g(x). In differential notation, du = f’(x)dx and dv = g’(x) dx, so we can state the rule
for Integration by Parts in its most common form as follows:

/udvzuv—/vdu.

To apply integration by parts, we look for a product of basic functions that we can identify as
u and dv. If we can antidifferentiate dv to find v, and evaluating f v du is not more difficult

than evaluating / u do, then this substitution usually proves to be fruitful. To demonstrate,
we consider the following example.

Example 5.4.1 Evaluate the indefinite integral

/ x cos(x) dx

Solution. When we use integration by parts, we have a choice for u and dv. In this problem,
we can either let u = x and dv = cos(x) dx, or let u = cos(x) and dv = x dx. While there is
not a universal rule for how to choose u and dv, a good guideline is this: do so in a way that
/ v du is at least as simple as the original problem / udv.

using integration by parts.

This leads us to choose! u = x and dv = cos(x) dx, from which it follows that du = 1dx and
v = sin(x). With this substitution, the rule for integration by parts tells us that

/xcos(x)dx =xsin(x)—/sin(x)-1dx.

All that remains to do is evaluate the (simpler) integral f sin(x) - 1dx. Doing so, we find
/x cos(x) dx = x sin(x) — (—cos(x)) + C = x sin(x) + cos(x) + C.

Observe that when we get to the final stage of evaluating the last remaining antiderivative,
it is at this step that we include the integration constant, +C.

I0bserve that if we considered the alternate choice, and let # = cos(x) and dv = x dx, then du = —sin(x) dx

293



Chapter 5 Evaluating Integrals

The general technique of integration by parts involves trading the problem of integrating
the product of two functions for the problem of integrating the product of two related func-
tions. That is, we convert the problem of evaluating / u dv to that of evaluating f v du. This
clearly shapes our choice of # and v. In Example 5.4.1, the original integral to evaluate was
f x cos(x) dx, and through the substitution provided by integration by parts, we were in-

stead able to evaluate f sin(x) - 1dx. Note that the original function x was replaced by its
derivative, while cos(x) was replaced by its antiderivative.

Activity 5.4.2. Evaluate each of the following indefinite integrals. Check each anti-
derivative that you find by differentiating.
a. [te~tdt c. [zsec’(z)dz

b. /4x sin(3x) dx d. fxln(x)dx

5.4.2 Some Subtleties with Integration by Parts

Sometimes integration by parts is not an obvious choice, but the technique is appropriate
nonetheless. Integration by parts allows us to replace one function in a product with its
derivative while replacing the other with its antiderivative. For instance, consider evaluating

/ arctan(x) dx.

Initially, this problem seems ill-suited to integration by parts, since there does not appear to
be a product of functions present. But if we note that arctan(x) = arctan(x)-1, and realize that
we know the derivative of arctan(x) as well as the antiderivative of 1, we see the possibility
for the substitution u = arctan(x) and dv = 1dx. We explore this substitution further in
Activity 5.4.3.

In a related problem, consider f t3sin(t?) dt. Observe that there is a composite function
present in sin(#2), but there is not an obvious function-derivative pair, as we have #3 (rather
than simply ¢) multiplying sin(t?). In this problem we use both u-substitution and integra-
tion by parts. First we write > = t - t? and consider the indefinite integral

/ t-t2 - sin(t?) dt.

We let z = t2 so that dz = 2tdt, and thus tdt = 1dz. (We are using the variable z to
perform a “z-substitution” first so that we may then apply integration by parts.) Under this
z-substitution, we now have

/t 12 sin(t?) dt = /z - sin(z) - %dz.

and v = %xz, from which we would write f x cos(x)dx = %xz cos(x) — f %xz(— sin(x)) dx. Thus we have replaced

the problem of integrating x cos(x) with that of integrating %xz sin(x); the latter is clearly more complicated, which
shows that this alternate choice is not as helpful as the first choice.
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The resulting integral can be evaluated by parts. This, too, is explored further in Activ-
ity 5.4.3.

These problems show that we sometimes must think creatively in choosing the variables
for substitution in integration by parts, and that we may need to use substitution for an
additional change of variables.

Activity 5.4.3. Evaluate each of the following indefinite integrals, using the provided
hints.

a. Evaluate f arctan(x) dx by using Integration by Parts with the substitution u =
arctan(x) and dov = 1dx.

b. Evaluate / In(z) dz. Consider a similar substitution to the one in (a).
c. Use the substitution z = #2 to transform the integral [ t3sin(t?)dt to a new
integral in the variable z, and evaluate that new integral by parts.

d. Evaluate / s5e5 ds using an approach similar to that described in (c).

e. Evaluate [ ¢! cos(e!) dt. You will find it helpful to note that % = e’ - e'.

5.4.3 Using Integration by Parts Multiple Times

Integration by parts is well suited to integrating the product of basic functions, allowing us
to trade a given integrand for a new one where one function in the product is replaced by its
derivative, and the other is replaced by its antiderivative. The goal in this trade of f u do for

/ v du is that the new integral be simpler to evaluate than the original one. Sometimes it is
necessary to apply integration by parts more than once in order to evaluate a given integral.

Example 5.4.2 Evaluate [ t2e! dt.

Solution. Letu = 2 and dv = et dt. Then du = 2t dt and v = ¢!, and thus

/tzetdt = t2¢! —/Ztetdt.

The integral on the right side is simpler to evaluate than the one on the left, but it still requires
integration by parts. Now letting u = 2t and dv = e dt, we have du = 2dt and v = €', so

that
/tzefdt=tzef—(Ztef—/ze"‘dt).

(Note the parentheses, which remind us to distribute the minus sign to the entire value of
the integral / 2te! dt.) The final integral o